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Abstract—In this project assignment, we reconstruct a 3D scene
and simultaneously obtain the camera poses of a monocular
camera with respect to the given scene also known as Structure
from Motion. We create the rigid structure from a set of images
with different view points.

I. PHASE 1: STRUCTURE FROM MOTION

A. Dataset

We are given with a set of 5 images of Unity Hall at WPI as
shown in fig. 1, using a Samsung S22 Ultra’s primary camera
at f/1.8 aperture, ISO 50 and 1/500 sec shutter speed. The
camera is calibrated after resizing using a Radial-Tangential
model with 2 radial parameters and one tangential parameter
using the MATLAB R2022a’s Camera Calibrator Applica-
tion beforehand. The images provided are already distortion-
corrected and resized to 800× 600px.

Fig. 1. Dataset.

B. Feature Matching, estimating fundamental matrix and
RANSAC

We are also given matched features. We reject the outliers
from the same set using RANSAC. We do so using an estima-
tion of the fundamental matrix, which is based on the epipolar
constraint given by xT

i Fxi = 0. F is 3× 3 matrix, which we
get by solving a homogeneous linear system Ax = 0 with
nine unknowns applying the Singular Value Decomposition
(SVD). We do so by taking eight random points from the pool
of matches and estimating a rough F matrix, computing the
epipolar constraint, and comparing it with a threshold value.
We then estimate the final F matrix using the inliers from
RANSAC. We utilize the inliers from cv2 for a more robust
result but our implementation also works effectively. Due to
noise in the matches, the estimated F matrix can be of rank
three i.e. σ9 ̸= 0. So, to enforce the rank two constraint, the
last singular value of the estimated F is set to zero. This also
results in all the epipolar lines intersecting at a single point
known as the epipole. The epipolar lines for a pair of images
are shown in Fig. 2. The epipole is the other camera position

in the first image frame; hence, the point is not visible in the
image.

Fig. 2. Epipolar lines for a pair of images.

The final F matrix we got is shown below:

Ffinal =

−1.607e− 07 −3.011e− 05 1.343e− 02
3.266e− 05 3.202e− 06 −3.486e− 02
−1.518e− 02 3.304e− 02 1.000e+ 00


C. Estimate Essential Matrix from Fundamental Matrix

The essential matrix is another 3× 3 matrix, but with some
additional properties that relate the corresponding points,
assuming that the cameras obey the pinhole model. The
matrix is given by E = KTFK, where K is the camera
intrinsic matrix. E is reconstructed with (1, 1, 0) singular
values due to the noise in K given by E = USV T , where
S is a diagonal matrix with the given singular values. The
estimated Essential matrix is given by:

Efinal =

−9.666e− 05 −5.827e− 01 1.395e− 01
6.355e− 01 5.369e− 02 −7.511e− 01
−1.880e− 01 7.960e− 01 2.791e− 02


D. Estimate Camera Pose from Essential Matrix

The camera pose consists of 6 DOF, Rotation (Roll, Pitch,
Yaw), and Translation (X,Y, Z) of the camera with respect to
the world. The camera pose is estimated from P = KR[I3×3−
C]. These four pose configurations can be computed from E

matrix where E = UDV T , and W =

0 −1 0
1 0 0
0 0 1


. The four configurations are C1 = U(:, 3) and R1 = UWV T ,
C2 = −U(:, 3) and R2 = UWV T , C3 = U(:, 3) and
R3 = UWTV T , C4 = −U(:, 3) and R4 = UWTV T . Also if
det(R) = −1, the camera pose is corrected i.e C = −C and
R = −R.



E. Triangulation Check for Cheirality Condition
We found four camera poses by decomposing the Essential

matrix. Only one of them is accurate. We triangulate the 3D
points given any two camera poses and the matched features
and plot all the 3D points as shown in 3. We disambiguate
the camera poses by checking the cheirality constraint, which
determines if the point is behind the camera. We triangulate
the 3D points using linear least squares to check the sign of the
depth Z in the camera coordinate system w.r.t. camera center.
A 3D point X is in front of the camera r3(X − C) > 0
where r3 is the third row of the rotation matrix (z-axis of the
camera). The pose with the most number of points satisfying
the constraint is the true camera pose. Now that we have the
camera pose configurations and their linear triangulated points.

Fig. 3. Triangulated 3D points from 2 camera poses.

To better estimate the triangulated points, we solve a nonlin-
ear minimization problem. The located triangulated points, X ,
are considered as the initial guess for the problem where we try
to minimize the reprojection error. We solve using nonlinear
optimization function scipy.optimize.least squares(). The
results are compared with the linear triangulation, which is
shown in Fig. 4.

Fig. 4. Linear and nonlinear triangulated 3D points from 2 camera poses.

Fig. 5. Reprojected points after linear triangulation.

Fig. 6. Reprojected points after nonlinear triangulation.

F. Perspective-n-points

Fig. 7. Camera poses after nonlinear PnP.

With the world points from nonlinear triangulation, intrinsic
parameters, and common points, the camera poses are esti-
mated using LinearPnP. Here, we again get a linear equation
and solve it using SVD to get the projection matrix. The
rotation and camera poses are extracted from the same matrix.
The estimation may not be accurate due to underlying outliers
that were removed using PnPRANSAC. The reprojection error
is minimized using nonlinear PnP using least squares. The
camera poses and all world points are shown in Fig. 7.



The reprojection errors are listed in the following table.

Error
Linear reprojection 6.8731
Nonlinear reprojec-
tion

6.840

Linear PnP (1,3) 777.91
Nonlinear PnP (1,3) 726.17
Linear PnP (1,4) 19.44
Nonlinear PnP (1,4) 7.486
Linear PnP (1,5) 44.71
Nonlinear PnP (1,5) 3.613

G. Visibility matrix and bundle adjustment

We create a visibility matrix for the given number of
cameras and total world points. The function initializes the
matrix with zeros and iterates over each world point and
camera to mark the visibility of the world point in each
camera. Fig. 8 shows the Visibility matrix size and how each
column shows if a world point is visible in each of the camera
view. Next, we use bundle adjustment to reduce the projection
error simultaneously for all the 5 images using this visibility
matrix. Bundle adjustment takes input parameters related to
camera poses, 3D points, visibility, and intrinsic matrix and
uses least squares optimization to refine the camera poses
and 3D points. The function returns the optimized camera
poses and 3D points. This is shown in 9, which shows bundle
adjustment for all the camera views.

Fig. 8. Visibility matrix size and Sample entries.

Fig. 9. Camera poses and world points after bundle adjustment.


