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Fig. 1: Matching Features

Abstract—This project seeks to leverage computer vision
technologies for the purpose of reconstructing three-dimensional
scenes and determining the positioning of cameras through a
process known as Structure from Motion (SfM). SfM is a com-
putational approach that employs a sequence of two-dimensional
images to extrapolate the three-dimensional structure of a scene,
resulting in the generation of 3D models based on point clouds.
Utilizing the foundational principles of stereoscopic photogram-
metry, SfM computes the relative three-dimensional positions of
objects from pairs of stereo images by applying triangulation
techniques.

I. PHASE 1: CLASSICAL APPROACH

A. Estimating Fundamental Matrix

In stereo geometry, two camera poses are subject to an
epipolar constraint. This means that if a 3D point is projected
onto one of the camera poses, its corresponding projection on
the other pose must lie on a line. The relationship between the
two projections is captured by the Fundamental matrix.

The Fundamental matrix represents a system of linear equa-
tions with 9 unknowns, which can be solved using Singular
Value Decomposition (SVD). After solving the system, the
rank constraint is enforced by setting the last singular value
to zero and recomputing the Fundamental matrix.

B. RANSAC

RANSAC stands for Random Sample Consensus, and it’s a
powerful technique often used in computer vision for identify-
ing and removing outliers, particularly to fine-tune matches be-
tween features. The method involves selecting random subsets
of the original data, then building a model from each subset.
The model that fits the most data points (inliers) best is chosen,
and these inliers are used to refine the model further. This
procedure is carried out repeatedly until a model that meets
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the desired criteria is found. In this scenario, RANSAC was
employed to eliminate incorrect pairings, thereby enhancing
the precision of the feature matching process.

C. Estimating Essential Matrix from Fundamental Matrix

The Essential matrix takes what the Fundamental matrix
does and goes a step further. It changes the focus from just
looking at images to considering the actual positions and
angles of the cameras in a 3D space. This means it helps
us understand how the two cameras in a stereo setup relate to
each other in the real world, not just how they capture images.

This extra information is really useful for figuring out the
3D layout of a scene and where exactly the cameras are, by
looking at how certain points match up in both camera views.
The Essential matrix also helps solve the puzzle of finding
these matching points in each pair of images.

In short, the Essential matrix is a key tool for anyone
working with 3D images and trying to understand or recreate
the space where the photos were taken. It’s very helpful for
building 3D models of scenes and for many other computer
vision projects.

D. Estimating Camera Pose from Essential Matrix

We applied Singular Value Decomposition (SVD) along
with several mathematical methods, as outlined in the problem
statement, to break down the Essential matrix into matrices
representing rotation and translation. Moreover, we conducted
a procedure known as SVD cleanup to verify that the resulting
rotation matrix truly represented a rotation.

Decomposing the Essential matrix is a vital task for calcu-
lating the relative positions and orientations of two cameras
that capture the same scene. With the rotation and translation
matrices in hand, we’re able to figure out how one camera is
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positioned and angled in relation to the other. This enables
us to create 3D points from matching 2D points in images, a
fundamental operation in 3D computer vision. This technique
is widely used in several areas, including robotics, augmented
reality, and the development of self-driving vehicles.

E. Linear Triangulation

Linear Triangulation involves determining the 3D locations
of points in the world by utilizing correspondences between
features, the camera matrix, and the positions and orientations
of the cameras. For each pair of corresponding 2D and 3D
points, two equations emerge from the projections of each
camera. Ideally, the point where the lines—from a 3D point
to its projections in both images—meet should give us the
exact location of the 3D point. However, these lines often do
not lie in the same plane, making it difficult to find a precise
meeting point. To work around this, we use Singular Value
Decomposition (SVD) to find the closest possible solution by
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solving a set of linear equations. We remove the scale factors
from these equations by taking advantage of the property that
the cross product of a vector with itself is zero. Additionally,
to make sure we have the right solution, we perform a chirality
check to confirm that the points are indeed located in front of
the camera, indicated by their positive Z-coordinates.

F. Nonlinear Triangulation

Once we’ve established the precise orientation and location
of the camera, our next objective is to reduce the discrepancy
between the world point as it’s re-projected and its observed
position in the image. Although minimizing this error linearly
can be beneficial, it often falls short of addressing the geo-
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metric discrepancies inherent in three-dimensional space. As
a result, we focus on refining the non-linear error to better
align the re-projected point with its true position in the world,
utilizing the least squares method available in the scipy library
for this purpose.

It’s important to highlight that the non-linear triangula-
tion method yields more precise outcomes than its linear
counterpart. This enhanced accuracy stems from the non-
linear technique’s ability to incorporate the complexities of
the camera’s projection model—something the linear approach
overlooks. Moreover, the non-linear method’s outcomes are
more closely aligned with the genuine geometry of the 3D
world, affirming its superiority and reliability for accurate 3D

reconstruction.

G. Perspective-n-Point (PnP)

After optimizing the world coordinates for two camera
frames, the next step involved estimating the poses for the
additional four frames using all images collected. The methods
employed were:

1) Linear Perspective-n-Point (PnP): We addressed this
by solving a linear least squares problem using either
12 or 6 point correspondences to estimate the new
camera pose (R and T ). The extraction of R and T was
facilitated through the use of SVD, specifically from the
last row of V T .

2) PnP RANSAC: Given PnP’s susceptibility to outliers
potentially skewing camera pose accuracy, we imple-
mented RANSAC. This method enhances robustness by
including points in the inlier set based on a reprojection
error threshold ϵ.

3) Nonlinear PnP: Echoing the triangulation approach, we
minimized geometric loss via least squares to secure a
more accurate camera pose estimation.

Utilizing nonlinear PnP, we derived each camera’s pose
relative to the X points, and plotted these alongside triangu-
lated points for both Unity hall and another building dataset.
This nonlinear approach was pivotal in estimating camera
poses for all remaining frames, each considered in relation
to triangulated 3D points, thereby ensuring a consistent and
precise 3D scene reconstruction.

H. Bundle Adjustment

Following the acquisition of camera poses and world co-
ordinates, refinement through Bundle Adjustment is the next
crucial step. This procedure optimizes the positions of cameras
and points simultaneously, involving:

1) Visibility Matrix: Constructed upon data file analysis,
this matrix tracks point visibility across cameras. As
”matching” files for each image are processed, a matrix
(with entries approximating 10,000 points in the case of
Unity Hall datasets) is filled, marking a 1 for each point
visible from a specific camera. This yields an n × m
matrix for n points and m cameras.

2) Bundle Adjustment: Employing the Scipy least squares
optimizer, as in prior steps, the visibility matrix plays a
crucial role in computational efficiency by delineating
necessary Jacobian calculations for expedited process-
ing. The objective is to minimize the reprojection er-
ror, representing the variance between observed image
points and their 3D projections. Adjustments to camera
poses and 3D points are iteratively made to reduce
this discrepancy to a minimal level. This process not
only diminishes reprojection error but also enhances
the precision and consistency of 3D reconstruction out-
comes, facilitating the removal of outliers from initial
reconstructions.



Bundle Adjustment is indispensable for refining 3D re-
construction results, ensuring the accuracy and reliability of
camera poses and world coordinates.
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