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Abstract—The following report consists of a detailed analysis
of a classical and deep learning approach to 3D reconstruction
of a scene and simultaneously obtaining the camera poses of a
monocular camera w.r.t. the given scene. This procedure is known
as Structure from Motion.
Keywords: Camera Intrinsic Matrix, Fundamental Matrix, Fea-
ture Matching, Epipolar Geometry, Triangulation, Perspective-
n-Points(PnP), Bundle Adjustment,

I. INTRODUCTION

A general approach to the SfM problem is described below:
• Feature Matching and Outlier Rejection using RANSAC
• Estimating Fundamental Matrix
• Estimating Essential Matrix from Fundamental Matrix
• Estimate Camera Pose from Essential Matrix
• Check for Cheirality Condition using Triangulation
• Perspective-n-Point
• Bundle Adjustment

II. METHODOLOGY

Concerning the workflow of the classical approach de-
scribed above, the following is a detailed description of each
step.

A. Feature Matching, Fundamental Matrix, and RANSAC

We have a set of images and their corresponding feature
matches in the form of text files. We will begin by extracting
the relevant features for a pair of two images but first, we
need tp understand the concept of the Fundamental Matrix. We
have performed two feature matching and outlier elimination.
One uses homography-based RANSAC and then refined with
RANSAC from the fundamental matrix.

Feature Matches of Image 1 and 2 are shown in Figures.

Fig. 1: Feature Matches Before

Fig. 2: Feature Matches after Homography RANSAC

Fig. 3: Feature Matches After RANSAC using Fundamental
Matrix

1) Estimating Fundamental Matrix: The primary step is to
define Fundametal Matrix. The fundamental matrix, denoted
by F, is a 3×3(rank 2) matrix that relates the corresponding
set of points in two images from different views (or stereo
images). The F matrix is only an algebraic representation of
epipolar geometry(intrinsic projective geometry between two
views). It can be algebraically defined as x

′T
i Fxi = 0 where

i = 1, 2, ...m. The fundamental matrix can be estimated by
solving the linear least squares Ax = 0.
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With N ≥ 8 correspondences between two images, the
fundamental matrix, F can be obtained as: By stacking the
above equation in a matrix A, the equation Ax = 0 is
obtained. This system of equations can be answered by solving
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the linear least squares using Singular Value Decomposition
(SVD). When applying SVD to matrix A, the decomposition
USV T would be obtained with U and V orthonormal matrices
and the last column of V is the true solution. However, due to
noise in the correspondence, the estimated F matrix can be of
rank 3. So, to enforce the rank 2 constraint, the last singular
value of the estimated F must be set to zero.

Fundamental Matrix Results
Optimized Fundamental Matrix:−9.490× 10−07 −4.111× 10−06 0.009

0.00000708 0.00000411 −0.034
−0.010 0.032 1.000


CV2 Fundamental Matrix:−9.935× 10−07 −2.997× 10−06 0.009

5.992× 10−06 4.162× 10−06 −0.034
−0.010 0.032 1.000


2) Outlier Rejection using RANSAC: The features will

have noisy correspondences that can be removed using the
RANSAC algorithm. Further, once we complete outlier rejec-
tion using RANSAC, we will fix a set of inliers that can be
used to calculate the Fundamental Matrix. Following is the
algorithm that describes this section:

Algorithm 1 Get inliers RANSAC
1: r = 0
2: for i = 1 : M do ▷ Choose 8 correspondences, (x̂1, x̂2)
3: F = EstimateFundamentalMatrix(x̂1, x̂2)
4: S = 0
5: for j = 1 : N do
6: if |xT

1 FxT
2 | < ϵ then

7: S = S ∪ j
8: end if
9: end for

10: if n < |S| then
11: n = |S|
12: Sin = S
13: end if
14: end for

B. Estimate Essential Matrix from Fundamental Matrix

The relative camera poses between two images can be
computed using the Essential Matrix E, which can be defined
as E = KTFK where K is the camera calibration matrix.

After extracting E from the above equation, we need to
reconstruct it in the following way:

E = U

1 0 0
0 1 0
0 0 0

V T

Epipolar Matrix:−0.0176 −0.0650 0.2396
0.1243 0.0594 −0.9600
−0.2628 0.9628 0.0383


C. Estimate Camera Pose from Essential Matrix

Since the E matrix is identified, the four camera pose
configurations: (C1, R1), (C2, R2)(C3, R3)and(C4, R4) where
CϵR3 is the camera center and RϵSO(3) is the rotation
matrix, can be computed from E matrix. Let E = UDV T

and W =

0 −1 0
1 0 0
0 0 1


The four configurations can be written as:

1) C1 = U(:, 3) and R1 = UWV T

2) C2 = −U(:, 3) and R2 = UWV T

3) C3 = U(:, 3) and R3 = UWTV T

4) C4 = −U(:, 3) and R4 = UWTV T

Another condition to check while calculating the above
configurations is if det(R) = −1, then the camera poses
should be corrected as C = −C AND R = −R.

Please find the plots for Epipolar lines in the Figure 4 and
5.

Fig. 4: Epipolar lines of Image 1

D. Triangulation Check for Cheirality Condition

Since we have the camera poses, we can now determine
the 3D position of points in the scene. This is known as
Triangulation. The set of 3D points obtained can be valid or
invalid depending on their relevance in depth as seen from two
different camera views. This can be accomplished by checking



Fig. 5: Epipolar lines of Image 2

the cheirality condition i.e. the reconstructed points must be in
front of the cameras. A 3D point X is in front of the camera
if: r3(X − C) > 0 where r3 is the third row of the rotation
matrix (z−axis of the camera). Essentially we want to know if
the depth of the given point is positive. If the depth is obtained
to be negative, then the point is behind the camera and can
be neglected. The best camera configuration (C,R,X) is the
one that produces the maximum number of points satisfying
the cheirality condition.

After performing triangulation we get four poses for which
the output is shown in Figure 6. Further after disambiguation
of the pose, we can identify correct pose for which the
triangulation output is shown in Figure 7.

Fig. 6: Points Viewed from Four Poses - Only One pose is
correct (z¿0)

1) Non-Linear Triangulation: Apart from minimizing the
algebraic error (achieved by linear triangulation), we are also
concerned with minimizing geometric error or in other words,

Fig. 7: Correct Pose Triangulation Output of Image 1,2

the projection error. The projection error can be calculated as
the difference between the measurement and the projected 3D
point.

minx

∑
j=1,2

(uj − P jT
1 X̃

P jT
3 X

)2 + (vj − P jT
2 X̃

P jT
3 X

)2

j is the index of each camera.// X̃ is the homogeneous
representation of X . PT

i is each row of the camera projection
matrix P . After performing triangulation we optimize the error
and get the output as shown in Figure 8.

Fig. 8: Correct Pose Non-Linear Triangulation Output of
Image 1,2

E. Perspective-n-Points

Now that we have a set of n 3D points in the world,
their 2D projections in the image, and the intrinsic parameter;
the 6 DOF camera pose can be estimated using linear least



squares. This fundamental problem, in general, is known as
Perspective-n-Point (PnP).

1) Linear Camera Pose Estimation: To estimate the camera
pose, given 2D-3D correspondences, we will enforce linear
least squares. The 2D points can be normalized by using the
intrinsic parameter to isolate camera parameters, (C,R), i.e.
K−1x.

2) PnP RANSAC: PnP is prone to error as there are outliers
in the given set of point correspondences and hence we will
use RANSAC for outliers rejection. The algorithm is defined
below:

Algorithm 2 PnP RANSAC
1: n = 0
2: for i = 1 : M do ▷ Choose 6 correspondences, (X̂ , x̂)

randomly.
3: [C,R] = LinearPnP (X̂ , x̂)
4: S = 0
5: for j = 1 : N do

6: e = (uj − P jT
1 X̃

P jT
3 X

)2 + (vj − P jT
2 X̃

P jT
3 X

)2

7: if e < ϵr then
8: S = S ∪ j
9: end if

10: end for
11: if n < |S| then
12: n = |S|
13: Sin = S
14: end if
15: end for

3) Nonlinear PnP: We must refine the camera poses, (C,
R) by minimizing the projection error. Linear PnP deals with
minimizing the algebraic error. The geometric error which
is calculated as a difference between the measurement and
projected 3D point, is minimized using Non-Linear PnP.

min(C,R)

∑
i=1,J

(uj − P jT
1 X̃

P jT
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)2

To enforce the orthogonality of the rotation matrix, the rota-
tion matrix R can be represented using quaternion,R = R(q).
The above equation can be modified as:

min(C,q)

∑
i=1,J
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After performing the pair level calculation and optimization
using Non Linear PnP and Non Linear Triangulation, we got
the below errors:

So the average reprojection error in pixels for the pipeline
till non linear triangulation are:

1) Linear Triangulation : 18.254
2) Non Linear Triangulation : 17.1
3) Linear PnP : 90.85
4) Non Linear PnP: 78.35
Output Before Bundle Adjustment

TABLE I: Reprojection Error - In Pixels (W.r.t Image 1)

Method Img2 Img3 Img4 Img5

Linear Triangulation 1.516 20.24 14.85 36.41
Non Linear Triangulation 1.45 19.59 14.01 33.35

Linear PnP (RANSAC) - 81.88 71.72 118.95
Non Linear PnP - 72.81 56.07 106.19

Fig. 9: Points in the World before bundle estimation

F. Bundle Adjustment

To refine the camera poses and 3D points obtained previ-
ously, we need to minimize the projection error and do a final
reconstruction of the scene.

1) Visibility Matrix: To achieve a final reconstruction, we
will first define a visibility matrix. V (I×J) is a binary matrix
where Vij is one if jth point is visible form ith camera and
zero otherwise.

After Bundle adjustment there were some issues because
of some outliers or optimization didnt happen properly. the
output is shown in Figure.10

2) Bundle Adjustment: The bundle adjustment refines cam-
era poses and 3D points simultaneously by minimizing the
following reprojection error over CI

ii=1
, qIii=1

andXJ
jj=1

.

III. PUTTING THE PIPELINE TOGETHER

The complete pipeline we have followed is shown in the
SfM-Overview algorithm.

IV. COMPARISON - OUR PIPELINE AND VISUAL SFM

Our Pipeline - Figure .
Visual SFM Software (Only Point based Output)

V. DISCUSSION

Even though the current pipeline produces decent results,
there is more work needs to be done.

Some of the major issues that we faced initially and might
be the reason for randomness in accuracy sometimes:



Fig. 10: Points in the World after Bundle Estimation

Algorithm 3 SfM - Overview
1: for all possible pair of images do ▷ Reject outlier

correspondences.
2: [x1, x2] = GetInliersRANSAC(x1, x2)
3: end for
4:
5: F = EstimateFUndamentalMatrix(x1, x2)
6:
7: E = EssentialMatrixFromFundamentalMatrix(F,K)
8:
9: [Cset, Rset] = ExtractCameraPose(E) ▷ Perform Linear

Triangualtion
10:
11: for j = 1 : 4 do
12: Xseti = LinearTriangulation(K, zeros(3, 1), eye(3),
13: Cseti, Rseti, x1, x2)
14: end for ▷ Check cheirality condition.
15:
16: [C,R] = DisambiguateCameraPose(Cset,Rset,Xset) ▷

Perform Non-Linear Triangualtion
17:
18: X = NonLinearTriangulation(K, zeros(3, 1), eye(3),

C,R, x1, x2, X0)
19:
20: Cset = C,Rset = R ▷ Register camera and add 3D points for

the rest of the image.
21:
22: for i=3:I do ▷ Register the ith image using PnP.
23: [Cnew,Rnew] = PnPRANSAC(X,x,K)
24: [Cnew,Rnew] = NonlinearPnP (X,x,K,Cnew,Rnew)
25: Cset = Cset ∪ Cnew,Rset = Rset ∪Rnew ▷ Add new

3D points.
26: Xnew = LinearTriangulation(K,C0, R0, Cnew,Rnew,

x1, x2)
27: Xnew = NonLinearTriangulation(K,C0, R0, Cnew,

Rnew, x1, x2, X0)
28: X = X ∪Xnew ▷ Build Visibility Matrix
29: V = BuildV isibilityMatrix(traj) ▷ Perfrom Bundle

Adjustment.
30: [Cset,Rset,X] = BundleAdjustment(Cset,Rset,X,K,

traj, V )
31: end for

Fig. 11: Pipeline Output in 3D

Fig. 12: Output using VSM - Sparse Reconstruction

• Even though SIFT is a good scalable feature matcher, it
gave some bad matches at least between images 1-4, and
1-5. We tried to remove some of the outliers by strict
thresholding using the methods (Homography RANSAC
and Fundamental matrix RANSAC). This helped but
because of this, the points may be concentrated on one
region which might affect the overall Essential matrix
calculation.

• Some other issues include Non linear optimization not
working every time like sometimes the optimization is
stuck on local minima, these issues can further be in-
vestigated and resolved using different parameters of the
optimizer.

• The Bundle adjustment implementation we did is having
some issues related to non accounting of Visibility matrix
as we handled the visibility a bit differently.

• Understanding and handling the data properly is also a
major concern as this affects both the stability of the
algorithm and also the performance.

Limitations of the Implementations:
• Currently our implementation lacks a solid visibility

matrix concept as we did some sort of hash map based
handling but it is not very proper.

• Our implementation Non Linear approaches can further
be tuned with different parameters of the optimizers.



• Bundle Adjustment needs to be improved further as
currently we are using scipy.optimize but this can be
upgraded with Solvers such as pySBA or cares solvers.

• Our implementation does not take into account of the
other features from other image correspondences. This
is important, event though our implementation can be
modified it requires a bit effort. These addition of corre-
spondences ensure all the depth points taken into account
and also helps in constructing a proper visibility matrix.

Future Directions
• Adding the Multi Image correspondences and optimizing

the handling of the data.
• Working on Deep learning based feature extractors such

as SuperGlue, LoFTR etc. These can help for better
correspondences in turn reduces the outliers.

• Improving the Speed of Bundle Adjustment.
One of the sample deep learning output from Superglue

is shown in Fig.13. We are currently trying to combine this
into our pipeline. If you see the Figure those matches seem
more robust without any need for refinement using RANSAC,
especially some of the models like superglue are trained for
scenarios like this (Buildings, Outdoor environment etc.)

Fig. 13: SuperGlue Output - Matches
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