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Fig. 1. Pinhole model of a camera is used to project a 3D point in space

onto a discrete, 2D image plane

I. FEATURE MATCHING

There are five input images of the same scene taken at
slightly different camera poses. SIFT keypoints and descriptors
can be used to perform keypoint matching across pairs of
images. As discussed in the next section, keypoint matching of
a point in the first image is reduced to a 1-D search along the
epipolar line in the other image. In this project, we used a set
of known matches, and pruned the matches using RANSAC
and the fundamental matrix as our model.

II. ESTIMATING FUNDAMENTAL MATRIX

The fundamental matrix describes the epipolar geometry
between two image planes and a world point that lies in
front of the camera pinhole (z > 0). The epipolar plane
is described by the vector between the two camera centers
(baseline) and the vector from one camera center to a world
point. The intersections of the baseline with the image planes
are known as the epipoles and the epipolar line in one image
is the projection of the outgoing ray from the other camera
center to the world point.

This forms the basic framework for estimating depth, where
the coordinates of the world point, w.r.t. one camera frame,
is given by the intersection of the outgoing rays from each
camera center to the world point.

The fundamental matrix, F', is a 3x3 matrix that is derived
using the 8-point algorithm which solves for it using algebraic
least squares and at least 8 correspondences. Due to noise, the
rank of F' may be full, which means it has no null space, and
consequently the epipolar geometry is not correctly defined.
We rectify this by setting the smallest singular value of F' to
0 and recomputing F'.

Fig. 2. The view from two cameras at arbitrary poses looking at the same
world point. The world point and two camera centers lie on the epipolar plane.

To further improve our estimation of F', we use the known
epipolar constraint and RANSAC. The epipolar constraint is
a geometric constraint that states the normal to the epipolar
plane is perpendicular:

ur T Fugr =0 (1)

where u, and ©wg represent the homogeneous image points
of the left and right cameras.

In our RANSAC model we select 8§ random matches from a
set of correspondences and compute the fundamental matrix.
The best set of matches are those that generate the maximum
number of inliers when the epipolar constraint is below some
small value, ¢ < 0.05. We run our RANSAC algorithm for
1000 iterations or until 99% of the inliers are recovered. The
final fundamental matrix is computed from the set of inliers.

III. ESTIMATING ESSENTIAL MATRIX

The essential matrix, F, describes the epipolar geometry
with respect to the camera coordinate space while the funda-
mental matrix describes it with respect to the image space. The
essential matrix encodes rotation and translation information
of one camera center with respect to the other. It follows that
the epipolar constraint can be written as:

CBLTEiL'R =0 (2)

where xp and xgp represent projections in the camera
coordinate space of the left and right cameras.

By substituting the projection equation relating the projec-
tion in the camera coordinate space to the image space into



the epipolar constraint, we can derive an equation to compute
E from F.

z=K '2qa 3)

where K is the intrinsic matrix of the camera (assuming the
same camera has been used in each view). Substituting this
into the epipolar constraint yields:

i K TEK g = 0 )
K TEK'=F (5)

Thus, the essential matrix can be derived from the funda-
mental matrix.

E=KTFK (6)

IV. ESTIMATING CAMERA POSE FROM ESSENTIAL
MATRIX

The essential matrix can be decomposed into the transla-
tion and orthonormal rotation matrices using singular value
decomposition (SVD). This yields four camera poses which
later need to be disambiguated:

C,=U(:3)
Cy=-U(:,3)
Cy=C

04 = CQ

R =Uuwv7T
Ry = Ry

Ry =UWTyT
Ry =Rs

where C, and R, represent the camera center and rotation
of each pose, U and V are the left and right matrix decom-
positions from the SVD of the essential matrix, £ and W is
defined as follows:

0 -1 0
W=1]1 0 0
0 0 1

V. TRIANGULATION CHECK FOR CHEIRALITY CONDITION

Since there are four poses, these need to be disambiguated to
identify the true orientation of the second camera with respect
to the first. One simple way of doing this is the cheirality
condition, which states that the reconstructed points must lie
in front of the cameras. Mathematically, this means that for
a world point X and camera pose defined by center C' and
rotation matrix R where 73 is the third row of the rotation
matrix:

’/‘3(X—C) >0

We compute a world point through linear and non linear
triangulation.

A. Linear Triangulation

Linear triangulation is performed by solving the algebraic
least squares. From the relationship u = PX where P is the
projection matrix, X is a homogeneous world point and @ is
a homogeneous image point we can define the constraint, & x
(PX) = 0. This yields two constraints per image which can
be stacked vertically and solved using algebraic least squares:

’UP3 — P2
—UP3 + Pl

where P,, is a row of the projection matrix, P.

The re projection error was calculated by predicting how
these points would be projected on the camera and calculating
error between both the points. The Re projection error before
optimization is 2.04

B. Non-linear triangulation

Using the linear triangulation as an initial guess, we can
minimize a non-linear reprojection error to find the optimal
world points:
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where j is an iterator over each image, and 4;, v are the

normalized projection of the homogeneous world point X as
defined below:
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The re projection error was reduced to 1.9 after optimiza-
tion.

VI. ESTIMATION CAMERA POSES, PNP
A. Linear PnP

Upon acquiring world points using the initial two images,
the subsequent step involves estimating the camera poses
for the remaining images relative to the first image, which
serves as the reference alignment. Leveraging the known 3D
points and obtaining 2D correspondences for each image,
alongside the intrinsic camera parameters encapsulated within
the camera calibration matrix K, facilitates the computation
of the rotation matrix R and translation vector C

Normalization of the 2D points is imperative to mitigate
the intrinsic effects of the camera, achieved through the
transformation K ~!- X, thereby rendering the points invariant
to intrinsic parameters. Given the six degrees of freedom
characterizing camera pose (three Euler angles and three
translations), a minimum of six 2D-to-3D correspondences is
requisite to solve for the 3 x 4 projection matrix encompassing
both rotation (R) and translation (7") parameters. This normal-
ization step and adherence to requisite correspondence criteria



are pivotal for robust camera pose estimation, underpinning
subsequent stages of the reconstruction process with accuracy
and reliability.

In the presented methodology, the rotational elements within
the three columns of the RI' matrix are ensured to be or-
thonormal, albeit subject to potential errors. To rectify this,
a singular value decomposition (SVD) is employed, whereby
only the multiplication of the left singular vectors (U) and
the right singular vectors (V') is retained. Furthermore, the
determinant of the resultant R matrix is calculated, and if
found to be -1, the entire R matrix is multiplied by -1 to
enforce proper alignment. It is noteworthy that the translation
vector is situated in the third column of the RI" matrix.

B. PnPRansac

Given the propensity of the Perspective-n-Point (PnP) al-
gorithm to yield numerous errors, we employ the Random
Sample Consensus (RANSAC) technique to mitigate outliers,
leveraging re-projection error as elucidated in the preceding
section.

C. Non-Linear PnP

Analogous to the triangulation process, wherein a linearly
estimated camera pose is initially obtained, subsequent refine-
ment of the camera pose is facilitated to minimize the re-
projection error. Subsequently, a further refinement of these
locations is conducted through Non-Linear Perspective-n-Point
(PnP) optimization utilizing Scipy.optimize. Additionally, the
rotation matrix is converted into a Quaternion representation,
deemed advantageous for preserving orthogonality, along with
the translation vector, during the optimization process. It
is noteworthy that this minimization task entails significant
nonlinearity due to the inherent divisions and parameterization
with quaternions.

VII. BUNDLE ADJUSTMENT

With the acquisition of all camera poses and corresponding
3D points, it becomes essential to refine these points to achieve
maximal accuracy and optimize both the 3D points and camera
poses. To accomplish this, Bundle Adjustment is employed.
Initialization of the Bundle matrix necessitates the construction
of the Visibility matrix, denoted by V;;, which establishes the
relationship between cameras and points. Here, j signifies the
j-th point visible in camera 1.

Consider a scenario where there exist N image points,
N3p world points, and no cameras (where ne is bounded
by the maximum number of provided image files, which in
this case is 6). Each camera is characterized by six extrinsic
parameters, comprising rotation (roll, pitch, yaw) and trans-
lation ( ¢, ¢y, c;). The sparsity matrix My, has dimensions
2N x (N3p x 3 4+ n¢ x 6). In the event that an image
point at index 12 in N corresponds to a world point at index
12 in N3p, the elements of matrix M, pertaining to their
relationship will be set to 1.

A notable advancement in the refinement process is ob-
served through the application of the Trust Region Reflective

(TRR) algorithm, a method of least squares known for its
robustness in handling sparse problems. Through this method,
a higher level of precision is attained in refining both the 3D
points and camera poses. Consequently, the pipeline reaches
its culmination with the completion of this refinement stage. A
comparative analysis between the refinement outcomes before
and after bundle adjustment serves to illuminate the efficacy
of the refinement process.

VIII. RESULTS AND OBSERVATIONS
A. Camera Pose Estimation

There were four possible camera poses. The points gen-
erated via linear triangulation yielded two pairs of mirrored
points as shown in Fig. Fig. 3] From this, it is evident that Pose
2 is the real camera pose because the Z values are positive.
This was corroborated mathematically using our camera pose
disambiguation function.
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Fig. 3. The estimated 3D depth points associated with each camera pose via
linear triangulation shows two sets of mirrored 3D points, of which only pose
2 is the true camera pose

After disambiguation, Fig. ] shows the real camera pose
with points generated via non-linear triangulation.

B. Linear and Non-Linear Triangulation

Non-linear triangulation was marginally better than linear
triangulation, with a reprojection error of X and Y respectively.
Since the difference was small, when both sets of 3D points
were plotted on the same plot, the points overlapped, which
explains why there is seemingly only one set of points plotted

in Fig. [3]

H Type Reproj. Error
Linear 2.04
Non-Linear 1.9
Linear PnP N/A
Non-Linear PnP N/A
Bundle Adjustment N/A




Estimated 3D Points and Camera Pose
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Fig. 6. Reprojection of linear triangulation depth points onto image 1
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Fig. 4. The estimated 3D depth points associated with the real camera pose
via non-linear triangulation

Linear and Non-Linear Triangulation
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Fig. 5. The difference between the 3D points estimated via linear and non-
linear triangulation varied in the order of 10~ 5 causing it to seem like only
the non-linear points were plotted in this image

Fig. 8. Reprojection of non-linear triangulation depth points onto image 1



Fig. 9. Reprojection of non-linear triangulation depth points onto image 2

points from all poses
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Fig. 10. The triangulation points from all the poses we’re calculated and
plotted in X,Z plane



	Feature Matching
	Estimating Fundamental Matrix
	Estimating Essential Matrix
	Estimating Camera Pose from Essential Matrix
	Triangulation Check for Cheirality Condition
	Linear Triangulation
	Non-linear triangulation

	Estimation Camera Poses, PnP
	Linear PnP
	PnPRansac
	Non-Linear PnP

	Bundle Adjustment
	Results and Observations
	Camera Pose Estimation
	Linear and Non-Linear Triangulation


