
RBE/CS 549 Project 2
Structure from Motion and NeRF

Using 2 Late Days

Blake Bruell
Worcester Polytechnic Institute

babruell@wpi.edu

Cole Parks
Worcester Polytechnic Institute

cparks@wpi.edu

Abstract—This report presents the results of implementing a
Structure from Motion (SfM) pipeline and a Neural Radiance
Field (NeRF) model. The SfM pipeline estimates the camera poses
and 3D structure of a scene from a set of 2D images by creating
point clouds, which recreate the scene in 3D.

I. PHASE 1: STRUCTURE FROM MOTION

A. Introduction

Structure from motion is a computer vision technique that
aims to recover the 3D structure of a scene from a set of 2D
images. The basic idea is to estimate the camera poses and 3D
points that best explain the observed 2D points in the images.
This is a challenging problem, as it requires solving for the
camera poses and 3D points simultaneously, and is sensitive
to noise and outliers. In this phase, we implemented a basic
structure from motion pipeline that estimates the camera poses
and 3D points from a set of 2D images. We begin this section
with the math and algorithms used in a basic SfM pipeline
for a single pair of images, and then extend it to multiple
images. We then discuss the challenges and limitations of the
basic pipeline, and propose a more robust and scalable pipeline
that addresses these issues. Finally, the results of the pipeline
applied to Unity Hall at WPI are presented.

B. Estimating the Fundamental Matrix

The first step in the Structure from Motion (SfM) pipeline
is to estimate the fundamental matrix. The fundamental matrix
describes the epipolar geometry between two images, relating
the points in one image to the corresponding epipolar lines in
the other image. This relationship is captured in the following
mathematicaly expression, refered to as the epipolar constraint:

x′⊤
i Fxi = 0 (1)

where xi and x′
i are the homogeneous coordinates of the cor-

responding points in the two images, and F is the fundamental
matrix. This equation is then expanded to the following form:

[
x′
i y′i 1

] f11 f12 f13
f21 f22 f23
f31 f32 f33

xi

yi
1

 = 0 (2)

which can be transformed into a the following linear equation:

x′
1x1 x′

1y1 x′
1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...
x′
nxn x′

nyn x′
n y′nxn y′nyn y′n xn yn 1





f11
f12
f13
f21
f22
f23
f31
f32
f33


= 0 (3)

Note that we need at least 8 point correspondences to solve
for Equation 3, as each correspondence only contributes 1
contraint to the system, as the epipolar constraint is a scalar
equation.

To solve Equation 3 we use singular value decomposition
(SVD) to find the least squares solution to the linear equation.
The fundamental matrix is then constructed from the least
squares solution, and the rank-2 constraint is enforced by
setting the smallest singular value to zero.

To increase the stability of the solution, the 8 points from
each image are normalized using basic normalization matrices,
T and T′. Once the eight-point algorithm is applied to the
normalized points, the fundamental matrix is denormalized
using the following equation:

F′ = T′⊤FT (4)

It is important to note, however, that the eight-point algo-
rithm is sensitive to noise and requires a sufficient number
of point correspondences for accurate results. Additionally, it
can be affected by degenerate configurations, such as coplanar
points or degenerate camera motion. To solve these solutions
one more step is required.

The resulting fundamental matrix can be visualized by
looking at the epipolar lines in the two images. Epipolar lines
are lines which pass though a feature point one image and
location of the other camera in that image. The epipolar lines
are shown in Figure 1.



Fig. 1: Epipolar lines in the two images

C. Match Outlier Rejection with RANSAC

To address the aforementioned issues with the naive eight-
point algorithm, we use the RANdom SAmple Consensus
(RANSAC) algorithm to reject outlier correspondences, and
thus obtain a more accurate estimate of the fundamental ma-
trix. RANSAC is an iterative algorithm that selects a random
subset of the data and fits a model to that subset, in our case a
random set of 8 correspondences. It then evaluates the model
on the remaining data, and the points that are consistent with
the model are considered inliers. This process is repeated for
a specified number of iterations, and the model with the most
inliers is chosen as the best estimate

One aspect of the algorithm which was glossed over is the
evaluation of the model on the remaining data. The naive
approach would be to simply consider the algebraic error of
Equation 1, and apply a threshold. This, while functinoal,
does not reflect the physical reality of what we are trying
to model, which is the geometric error. The better option, and
what was used, is Sampson distance, which is a first order
approximation to geometric error. The Sampson distance is
given by the following equation:

d(xi,x
′
i)

2 =
(x′⊤

i Fxi)
2

∥Fxi∥22 + ∥F⊤x′
i∥22

(5)

The output of the fundamental mattix RANSAC with Samp-
son distance is shown in Figure 2. It can clearly be seen that
RANSAC has effectively removed the outlier correspondences,
resulting in a more accurate set of matches.

D. Estimating the Essential Matrix from the Fundamental
Matrix

The next step of the SfM pipeline is to estimate the essential
matrix from the fundamental matrix. The essential matrix is
a 3 × 3 matrix that relates the corresponding points in two
images, assuming that the cameras obey the pinhole model.

Fig. 2: Matched features with discarded matches shown in red

It can be computed from the fundamental matrix using the
following relationship:

E = K⊤FK (6)

Due to noise in the calculation of the fundamental matrix,
the essential matrix is not guaranteed to be of rank 2. To
enforce this constraint, we use singular value decomposition
to decompose the essential matrix into its constituent parts,
and then reconstruct it using the following equation:

E = U

1 0 0
0 1 0
0 0 0

V⊤ (7)

E. Estimating Camera Pose from the Essential Matrix

Once the essential matrix has been estimated, the next step
is to estimate the camera pose. The essential matrix is a
representation of the relative pose between the two cameras,
and it can be decomposed into the rotation and translation
components. The decomposition of the essential matrix is
given by the following equation:

E = [t]×R (8)

Sadly, the decomposition of the essential matrix is not
unique, and can result in four possible camera poses. To
resolve this ambiguity, we use the following method:

1) Compute the four possible camera poses using the
essential matrix

2) Triangulate the 3D points for each of the four camera
poses

3) Enforce the cheirality condition
Step 1 is accomplished by decomposing E using SVD

into U, D, and V. The four possible camera poses are then
computed using the following equations:

W =

0 −1 0
1 0 0
0 0 1


1) R1 = UWV⊤ and C1 = U(:, 3)
2) R2 = UWV⊤ and C2 = −U(:, 3)
3) R3 = UW⊤V⊤ and C3 = U(:, 3)
4) R4 = UW⊤V⊤ and C4 = −U(:, 3)

where (:, 3) denotes the third column of the matrix, Ri is a
rotation matrix, and Ci is the camera center. The triangulation
process for the second step will be discussed in the next
section. The output of this process is shown in Figure 3.

The cheirality condition is simply the condition that the 3D
points are in front of the camera. This is enforced by checking
the sign of the depth of the 3D points, and discarding the
camera poses that do not satisfy the condition. The cheirality
condition is given by the following equation:

R(:, 3)⊤(X−C) > 0 (9)

Due to noise, though, Equation 9 is not guaranteed to be
satisfied for all 3D points in the correct camera. To resolve
this issue, we simply accept the camera pose that satisfies the



Fig. 3: Initial triangulation plot with disambiguity, showing all
four possible camera poses

cheirality condition for the maximum number of 3D points.
The threshold for the cheirality condition was also changed to
> 0.1, to account for noise.

F. Linear Triangulation

With two camera poses (Ri, Ci) and the corresponding 2D
points in the images (xi, x′

i) we can calulate X , or the world
point of each correspondence. To find a solution to the problem
of triangulatoin, we begin with the pinhole projection model:[

x
1

]
= αP

[
X
1

]
(10)

where P is the matrix:

P = K[R|t] (11)

which can alternatively be written as:[[
x
1

]
×
P

][
X
1

]
= 0 (12)

We stack Equation 12 for each camera pose and its cor-
respoding image point, and then solve for X using singular
value decomposition. The result of this process is shown in
Figure 5.

G. Non-Linear Triangulation

Given the linearly estimated 3D world points from the
previous step, we refined their locations to minimize the
reprojection error. The linear triangulation method minimizes
the algebraic error, but the reprojection error is a more geomet-
rically meaningful error that can be computed by measuring
the geometrix error between an image points and the world
point projected into its image plane. Since there are likely

Fig. 4: Comparison of projections between non-linear and
linear triangulation for Image 1

nonlinearities in the camera model, this is a more accurate
method for estimating the 3D points. A comparison of the
projections between the non-linear and linear triangulation
methods is shown in Figure 4.

This method did improve the accuracy of the 3D points,
as shown in results section of this phase, in Table I, but the
optimization step was likely not needed, as only in some cases
was the error significantly reduced, and even in those cases the
error to begin with was not that high. This reflects the fact that
the linear triangulation method is already quite accurate.

H. SfM Pipeline for a Single Pair of Images

With all the building blocks in place, we can now summarize
the SfM pipeline for a single pair of images:

1) Use RANSAC to reject outlier correspondences and find
the fundamental matrix

2) Estimate the essential matrix from the fundamental
matrix



Fig. 5: Final reconstruction of the scene using the SfM pipeline
for a single pair of images

3) Estimate the 4 possible camera poses from the essential
matrix

4) Linearly triangulate the 3D points for each possible pose
5) Disambiguate the camera poses using the cheirality

condition
6) Non-linearly triangulate the 3D points to minimize the

reprojection error

This pipline works very well, and an output of the pipeline
is shown in Figure 5.

I. Perspective-N-Points (PnP) and PnP RANSAC

To extend this pipeline to multiple images, we need to
estimate the camera pose for each image. This is accom-
plished using the Perspective-n-Points (PnP) algorithm, which
estimates a camera pose from a set of 3D points and their
corresponding 2D projections. The PnP algorithm can take in
n, hence the name, but we used n = 6 which allows the math
to remain simple.

PnP first consists of forming a linear estimate of the camera
pose using, formed by transforming Equation 10 into the

Fig. 6: Camera 3’s estimated pose using PnP RANSAC

following form:

[
X,Y, Z, 1, 0, 0, 0, 0,−xX,−xY,−xZ,−x
0, 0, 0, 0, X, Y, Z, 1,−yX,−yY,−yZ,−y

]



p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34



= 0

(13)
and then stacking it n times for each point used in the linear
PnP. This is then solved using SVD, yielding the projection
matrix P. P is then decomposed into R, and t:

R = K−1P(:, 1 : 3)

t = K−1P(:, 4)
(14)

which is then cleaned up:

U,D,V = SVD(R)

R = UV⊤

t = t/D11

(15)

Finally, if det(R) = −1, we flip the sign of of R and t.
This process yields a decent estimate of the camera pose,

but is very sensistive to noise and outliers. To address this
the RANSAC algorithm is applied, with 6 random points
chosen each iteration, and with inliers being determined using
reprojection error. The result of this process is shown in Figure
6.



Fig. 7: Comparison of reprojected points between non-linear
and linear PnP for Camera 3

J. NonLinear PnP

While the linear PnP RANSAC algorithm is a good start,
it is not perfect. To address this, we use the Levenberg-
Marquardt algorithm to refine the camera pose estimate. The
Levenberg-Marquardt algorithm is a non-linear optimization
algorithm that minimized a sum of squares of residuals. The
residuals for the algorithm are simply given by the difference
between the reprojected points and the true image points:

r = x−PX (16)

which means that Levenberg-Marquardt is minizing the fol-
lowing cost function:

C =

n∑
i=1

∥xi −PXi∥22 (17)

The result of this process is shown in Figure 7.

K. SfM Pipeline for Multiple Images

With PnP added to our toolbox, we can now summarize the
basic SfM pipeline for multiple images:

Fig. 8: Output from 5 differnt view of Unity Hall, without
bundle adjustment

1) Perform the SfM pipline for a single pair of images on
the first two images

2) For each subsequent image:
a) Determine all image points which have a known

3D world-point
b) Estimate the camera pose using PnP RANSAC
c) Refine the camera pose using non-linear PnP
d) Triangulate all points which have a match to a

previos image, and do not already have a known
3D world-point

e) Add the new 3D points to the set of known world
points

The output of this pipeline is shown in Figure 8.
This pipeline may seem fairly straight forward, but looking

closer at the steps for subsequent images reveals a major
challenge: determining which image points do and do not have
a known 3D world-point. This is a non-trivial problem, and is
the focus of the next section.

L. World Point Set Data Structure

To be able to efficiently determine which image points have
a known 3D world-point, we need to store the world points
in a data structure that keeps track of which image points are
associated with each world point. This is accomplished using
a pair of structures:

1) A list of world points and the associated image points
in each image



2) A dictionary the following structure:
a) Keys: image ids (denoted as id1)
b) Value: Dictionary

i) Keys: all image points (ip1) in image id1
ii) Value: Dictionary

A) Color: color of ip1
B) Has WP: boolean indicating if ip1 has a

known 3D world-point
C) Key: image id (id2) of each image with a

match to point ip1
D) Value: matched point (ip2) in image id2

These data structures allow one to efficiently recover the all
matches for a given point, identidied by a (id1, ip1)
pair, and to efficiently recover all matches for a given image,
identified by id1. The correspoding world point list simply
keeps track of every world point and its color, as well as the
image points in each image that are associated with it. This
means the world point list encode the tracks in the set of
images.

A track is a set of image points that are all associated with
the same world point. The world point list and the dictionary
are then used to efficiently determine which image points for
a particular have a known 3D world-point, and to efficiently
determine which points matched with in a point in a particular
image do not have a known 3D world-point, crucial for the
SfM pipeline for multiple images.

M. Bundle Adjustment

The final aspect of the SfM pipeline is bundle adjustment,
which refines the camera poses and 3D points simultaneously
by minimizing the reprojection error of all the image points
which have a known world point. The optimization problem
can be expressed as follows:

min
{Ci,qi}I

i=1,{Xj}J
j=1

I∑
i=1

J∑
j=1

Vij

(
∥xj −PiXj∥22

)
(18)

where Ci and qi are the camera center and rotation quaternion
(used for more stable convergence) for the ith camera, Xj is
the jth world point, and Pi is the projection matrix for the
ith camera, and Vij is a binary matrix that indicates if the jth
world point is visible in the ith image.

This is a slow optimization problem, as it involves a large
number of parameters, but is made feasible by the using a
sparsity matrix for the Jacobian, which is derived from V.
The Trust Region Reflective algorithm is used to solve the
optimization problem.

This formulates the last step of our final pipeline, which is
as follows:

1) Perform the SfM pipline for a single pair of images on
the first two images

2) For each subsequent image:
a) Determine all image points which have a known

3D world-point
b) Estimate the camera pose using PnP RANSAC

c) Refine the camera pose using non-linear PnP
d) Triangulate all points which have a match to a

previos image, and do not already have a known
3D world-point

e) Add the new 3D points to the set of known world
points

f) Perform bundle adjustment for all images/cameras
and world points

Now the part you have been waiting for, the results. The
SfM pipeline described above was applied to 5 images taken
of Unity Hall at WPI. The results of the pipeline with bundle
adjustment is shown in Figure 9, and with final result with
color is shown in Figure 10.

The triangulation reprojection error for each image pair is
before and after nonlinear optimization is shwon in Table I,
the PnP reprojection error for each added view is shown in
Table II, and the bundle adjustment reprojection error each set
of views for which it was performed is shown in Table III.

View 1 View 2 Number of Points Error (Linear) Error (Nonlinear)
1 2 508 1.507424 1.503899
1 3 55 1.996084 1.934641
2 3 184 0.898506 0.897582
1 4 34 1.375734 1.371658
2 4 102 1.216846 1.216223
3 4 629 0.741905 0.587245
1 5 7 1.694281 1.672964
2 5 18 1.669900 1.374472
3 5 104 1.932718 1.340792
4 5 92 1.675483 1.603067

TABLE I: Triangulation reprojection error for each pair of
views, before and after nonlinear optimization.

New View Number Points Error (Linear) Error (Nonlinear)
3 191 25.663625 5.625782
4 390 10.415050 3.000878
5 496 18.373742 7.761963

TABLE II: PnP reprojection error for each added view, before
and after nonlinear optimization.

Views Error (Before) Error (After)
1, 2, 3 1.866829 1.042487
1, 2, 3, 4 1.119583 0.943924
1, 2, 3, 4, 5 1.751347 1.015014

TABLE III: Bundle adjustment reprojection error for all views.



Fig. 9: Final reconstruction of the scene using the SfM pipeline
with bundle adjustment for 5 images of Unity Hall

Fig. 10: Final reconstruction of the scene using the SfM
pipeline for multiple images


