
Project 2: Buildings Built in minutes: SfM and
NeRF

Krunal M. Bhatt
Masters of Science in Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: kmbhatt@wpi.edu

USING 1 LATE DAY

Jesulona Akinyele
Masters of Science in Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: jfakinyele@wpi.edu

USING 1 LATE DAY

Abstract—The report presents our understanding and exper-
imentation with reconstructing a 3D scene and simultaneously
obtaining camera poses of a monocular camera w.r.t given scene.
We reconstruct the scene from a set of given images with different
POV’s (which is similar to a camera in motion). Phase 1 shows
the basic traditional approach to solving the problem. We use
the images provided to us for the project.

I. PHASE 1: TRADITIONAL APPROACH

Phase 1 shows a traditional approach as to how a rigid
scene is recreated in 3D from a set of images having different
points of view. We also obtain the camera pose simultaneously
while recreating the rigid scene in 3D. This approach is called
Structure from Motion(SfM). The traditional approach has
the following outline: Feature Matching and Outlier Rejec-
tion using RANSAC, Estimation of the Fundamental Matrix,
Estimation of Essential Matrix from the Fundamental matrix,
Estimating Camera Pose from the Essential Matrix, Checking
for Cheirality Condition using Triangulation, Perspective-n-
point, Bundle Adjustment. We explain our approach to solving
them in the following subsections. The subsections contain the
output for the steps discussed above.

The dataset has been provided to us for the same. Images
are in .png format. They are taken from a Samsung S22
Ultra’s primary camera at f/1.8 aperture, ISO 50, and 1/500
sec shutter speed. The camera is calibrated after resizing
using a Radial-Tangential model with 2 radial parameters
and 1 tangential parameter using MATLAB R2022a’s Camera
Calibrator Application. Images provided are distortion-free
and resized to 800 x 600px. Additionally, as SfM relies heavily
on good features and their matching, we have been given the
keypoint matching data in the matching∗.txt file. A separate
relative keypoint matching file is there for every image in
the dataset. Fig. 1 shows the dataset images used for the
programming exercise.

Fig. 1. Dataset for the project

A. Feature matching, Fundamental Matrix, and RANSAC:

Keypoint matching using Scale-Invariant Feature Transform
or SIFT key points is a fundamental task. SIFT detects key
points that are invariant to scale, rotation, and illumination,
after which, it computes descriptors which are neighborhoods
around the key points. Descriptors are matched and corre-
sponding points are found in the second image and the closest
match is found based on a distance metric. Now, before
these matches are rejected, let’s look at what the Fundamental
Matrix is.

1) Fundamental Matrix : Denoted by F, the fundamental
matrix is a 3x3 (rank 2) matrix that relates the set of points
in two images from different views. The fundamental matrix
depends on the epipolar geometry between two views. Geom-
etry is an intrinsic projective geometry between the two views.
This geometry depends on the camera’s internal parameters (K
matrix) and the relative pose i.e.: it is not dependent on the
structure of the scene. We will see more of epipolar geometry
in the next sub-section.

The F matrix is a geometric and arithmetic representation
of the epipolar geometry. We use an epipolar constraint or
correspondence condition which is

x′
iFxi = 0

Since F is a 3x3 matrix we can write a homogenous linear
system with 9 unknowns as follows:

x′
i =

[
x′
i y′i 1

]
, F =

f11 f12 f13
f21 f22 f23
f31 f32 f33

 , and xi =

xi

yi
1

 .

Expanding, we get:

x′
if11xi + x′

iyif21 + xif31 + yixif12

+ yiyif22 + yif32 + xif13 + yif23 + f33 = 0.



Simplifying for m correspondences:

 x1x
′
1 x1y

′
1 x1 y1x

′
1 y1y

′
1 1

...
...

...
...

...
...

xmx′
m xmy′m xm ymx′

m ymy′m 1





f11
f21
f31
f12
f22
f32
f13
f23
f33


= 0

In a similar setting while performing homography between
two images, was calculated. 4 points were used in that. Unlike
homography, while estimating the F matrix, each point only
contributes to one constraint the epipolar constraint. Therefore,
we use 8 point algorithm to solve the homogeneous system
above. The Fig. 2 shows the estimated F matrix.

F =

 3.00189977× 10−6 −2.45583926× 10−5 6.88351304× 10−3

1.30755935× 10−5 4.35858746× 10−6 −9.62965121× 10−3

−6.76368496× 10−3 1.45549178× 10−2 −9.99801127× 10−1


Fig. 2. The Fundamental Matrix F

2) Epipolar Geometery: For instance, we observe X in the
3D-space, as captured in x in the first image and x′ in the
second, we form an epipolar plane π that has the points x,
x’, and X as coplanar points. The Fig. 3 shows the epipolar
geometry visually.

Fig. 3. Epipolar geometry

We have a Epipole as the point of intersection of the line
joining the camera centers with the image plane (e and e’).
The Epipolar Plane π is the plane containing the baseline.
The Epipolar line is the intersection of the epipolar plane
with the image plane. All the epipolar lines intersect at the
epipole.

3) Match Outlier Rejection via RANSAC: In this step in
the process, we remove the outliers that are generated after
SIFT. The data is bound to be noisy after we perform SIFT.

F matrix with maximum numbers of inliers is chosen. Fig. 4
shows the same.

Fig. 4. RANSAC Output

B. Estimate Essential Matrix from Fundamental Matrix:

Now that we have F from the epipolar constraints, we can
find the relative camera poses between the two images. This
can be computed using Essential Matrix E. Essential Matrix
is another 3x3 matrix but has additional properties that relate
the points assuming that the cameras follow the pinhole model.
We can represent this as

E = KT FK

where K is the camera calibration matrix or camera intrinsic
matrix. It is evident from the above equation that we can
extract the E matrix with the help of the above equation. E
can be described as:

E = U

1 0 0
0 1 0
0 0 0

V T

Here, F is defined in the original image space (i.e. pixel
coordinates) whereas E is in the image coordinates. The Fig.
5 shows the essential matrix which is calculated.

E =

 0.24902383 −0.43240625 −0.00646718
−0.43245373 0.75092275 0.00842021
0.00403665 −0.00981988 0.99994265


Fig. 5. The Essential Matrix E

C. Estimating Camera Pose from E matrix:

The camera pose has six degrees of freedom w.r.t to world.
Since the E matrix is identified, the four camera poses are:
(C1, R1), (C2, R2), (C3, R3), and(C4, R4) where C ∈ R3 is



the camera center and R ∈ SO(3) is the rotation matrix, can
be computed. Thus, the camera pose can be written as

P = KR[I3x3 − C]

Let,

E = UDV Tand W =

0 −1 0
1 0 0
0 0 1


The four configurations can be written as:

C1 = U(:, 3) and R1 = UWV T

C2 = −U(:, 3) and R2 = UWV T

C3 = U(:, 3) and R3 = UWTV T

C4 = −U(:, 3) and R4 = UWTV T

We take the det(R) ad if it should be equal to one. If
det(R) = −1, we correct the camera pose by changing the
sign of C and R to Negative. The Fig. 6 shows the camera
pose. We

Fig. 6. Pose Estimation

D. Triangulation Check for Cheirality Condition:

Till now, we calculated four poses for different cameras for a
pair of images using the essential matrix. Now, we triangulate
the 3D points, given two camera poses.

To get the correct camera pose, we need to remove the
disambiguity. This can be done by checking the cheirality
condition, triangulating the 3D points using linear least squares
to check the sign of the depth in Z in the camera coordinate
system using linear least squares to check the sign of the depth
Z in the camera coordinate system w.r.t to camera center. Fig.
7 shows the triangulation plot with disambiguity removed and
non linear triangulation implimented.

E. Perspective-n-Points:

We now have a set of n 3D points in the world, their
2D projections in the image and intrinsic params, the 6DOF
camera pose can be estimated using linear least squares. We
call this Perspective-n-point(PnP). For a solution to exist in
this particular problem, n ≥ 3. In many methods, it is assumed

Fig. 7. Triangulation Output

that the camera is calibrated. We learn here a vanilla version
of PnP, where we register a new image given image-world
correspondences, X to x which is then followed by nonlinear
optimization.

1) Linear Camera Pose Estimation : Now that we have
X ↔ x and K, we estimate the camera pose using linearPnP
function. We isolate the camera parameters by normalizing 2D
points by the intrinsic parameter. Linear least squares system
that related the 3D and 2D points can be solved for (C,R)
where,

t = −RTC

Rotation matrix R ∈ SO3 would not be correct since linear
least squares do not force orthogonality. To resolve this wr
correct the matrix R = UV T where R = UDV T .

In order to estimate the camera’s posture accurately, the lin-
ear Perspective-n-Point (PnP) technique requires a minimum
of 6 correspondences. This is because the algorithm requires
constraints. A minimum of six constraints are required to solve
for the six unknowns that comprise the position (translation)
and orientation (rotation) of the camera. These constraints are
contributed by each correspondence between a 3D point and
its corresponding 2D projection. These constraints are two
for position (x, y) and one for depth (z). This cutoff point
guarantees that there is enough data to build a system of linear
equations that includes intrinsic (calibration) and extrinsic
(rotation and translation) factors, allowing for precise camera
pose estimation.

2) PnPRANSAC : PnP RANSAC, or Perspective-n-Point
with Random Sample Consensus, is a reliable variation of
the Perspective-n-Point algorithm that is frequently used in
robotics and computer vision applications to estimate the pose
(position and orientation) of a camera in a scene using 3D–2D
point correspondences. PnP RANSAC iteratively selects sub-
sets of correspondences, frequently surpassing this minimal
threshold, to estimate the camera posture, in contrast to the lin-
ear PnP technique which requires at least 6 correspondences.
This procedure aids in reducing the impact of anomalies or



inaccurate correlations found in the data. Fig. 8 shows the
algorithm implemented in the code.

Fig. 8. PnP RANSAC

PnP RANSAC offers a more reliable and accurate estima-
tion of the camera pose in the presence of noise or outliers
in the correspondence data by iteratively fitting models to
random subsets of the data and choosing the best model
based on consensus, usually measured by the number of inliers
supporting the model.

3) Nonlinear PnP : A variation of the PnP algorithm
called nonlinear PnP (Perspective-n-Point) increases accuracy
by fine-tuning the initial camera posture estimate derived from
techniques such as linear PnP or PnP RANSAC. Nonlinear
PnP iteratively refines the camera pose using optimization
techniques as Levenberg-Marquardt optimization, in contrast
to linear approaches, which solve for the camera pose using
linear techniques and may have accuracy constraints. By using
the current estimate of the camera position, this optimization
procedure minimizes the reprojection error, a measure of the
difference between the observed 2D image points and the 3D
points projected onto the picture plane.

The geometrically meaningful reprojection error between
measurement and projected 3D points is given as follows:

min
C,R

∑
i=1,J

(
uj − pT1 Xi

pT3 Xi

)2

+

(
vj − pT2 Xi

pT3 Xi

)2

Here Xi, is the homogeneous representation of X. A com-
pact representation of the rotation matrix using quaternion is
a better choice to enforce orthogonality of rotation matrix as
:

min
C,q

J∑
i=1

(
wj −

pTi Xj

pTi Xj

)2

+

(
vj −

pTi Xj

pTi Xj

)2

F. Bundle Adjustment:

After all the camera poses and 3D points are estimated, we
refine 3D points that are initialized by previous reconstructions
which were due to minimization of reprojection error.

We build a visibility matrix which finds the relationship
between camera and a point. This is a binary matrix V which
is IXJ

By minimizing the reprojection error—the discrepancy be-
tween the observed 2D image points and the 3D points
projected onto the picture plane using the currently estimated
camera poses and 3D structure—bundle adjustment optimizes
the overall 3D reconstruction. Bundle Adjustment enhances
the overall consistency and precision of the reconstruction by
optimizing both the 3D structure (the locations of the rebuilt
points) and the camera poses (the positions and orientations of
the cameras). Non-linear optimization techniques like Gauss-
Newton and Levenberg-Marquardt are commonly used to im-
plement it. These algorithms modify the parameters iteratively
to minimize the reprojection error. Bundle adjustment is cru-
cial for fine-tuning large-scale reconstructions, fixing camera
position drift or inaccuracies, and enhancing the overall quality
of the 3D scene reconstruction.

We also have the Table I for reprojection error:

Method Error
Linear triangulation 25.32

Non-linear triangulation 24.6
Linear PnP N/A

Non-linear PnP N/A
TABLE I

REPROJECTION ERRORS

REFERENCES

[1] https://rbe549.github.io/spring2024/proj/p2/
[2] http://cvrs.whu.edu.cn/downloads/ebooks/Multiple%20View

%20Geometry%20in%20Computer%20Vision%20(Second%20Edition).pdf
[3] https://cmsc426.github.io/math-tutorial/#svd
[4] https://en.wikipedia.org/wiki/Eight-point algorithm
[5] https://users.cecs.anu.edu.au/ hongdong/new5pt cameraREady ver 1.pdf
[6] https://www.microsoft.com/en-s/research

/wp-content/uploads/2016/02/tr98-71.pdf


