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INTRODUCTION

In this report, we will provide a comprehensive analysis
of our implementation of the monocular camera structure
from motion (SFM). Our SFM pipeline consists of several
key steps, including feature matching with SIFT, estimating
the fundamental matrix with epipolar constraints, deriving the
essential matrix from the fundamental matrix, estimating the
camera pose from the essential matrix, triangulating points lin-
early and nonlinearly while checking for chierality constraints,
solving for perspective-n-points using linear and nonlinear
optimization, and performing bundle adjustment for all input
images.

A. Feature Matching

We begin by establishing feature matches between each pair
of images. We employed the Scale-Invariant Feature Trans-
form (SIFT) algorithm for this task. Before identifying feature
matches, we first determined the camera’s intrinsic matrix
via calibration and rectified the raw images to correct for
distortion. Figure 1 illustrates the feature matches discovered
between the first and second images.

Fig. 1. Feature Matching and Outlier Rejection

B. Fundamental Matrix Calculation

Next, we estimate the fundamental matrix(8 point algorithm
with SVD cleanup), represented as F, which is a 3x3 matrix
with a rank of 2. It serves to establish the relationship
between corresponding sets of points in two images captured
from different viewpoints, also known as stereo images. The
fundamental matrix can be calculated by
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To ensure the selection of only reliable correspondences,
RANSAC procedure was conducted. This process aimed to
isolate pure inliers from the sets of correspondences. Subse-
quently, these refined points were utilized to compute a more
precise Fundamental Matrix. The resulting fundamental matrix
is as follows:

3.2126e — 08  —3.1944e — 05 1.3178e — 02
F = 3.4375¢ — 05 3.0271le — 06  —3.4118e — 02
—1.5041e — 02 3.2359e — 02 1

The green matches in Figure 1 shows the matches after 8-point
algorithm RANSAC.

C. Essential Matrix and camera pose Calculation:

Using the estimated fundamental matrix found in the pre-
vious step, we then calculated the Essential Matrix between
an image pair as £ = KTFK, where K is the camera
intrinsic matrix. However, since there might still be noise in the
calculated Essential Matrix, we have to enforce the epipolar
constraint by reconstructing the Essential Matrix with singular
value decomposition with rank reduction. E = UDVT then
substitute D with
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The essential matrix generated is obtained as follows:
0.0046 —0.6339 0.1146
E = 0.6821 0.0513  —0.7147
—0.1639 0.7606  0.0260

Using this, we now have 4 different combinations of R and C
giving 4 different camera poses with 2 values for each - R and
C. Out of these 4 poses, there is only one valid pose for which,
the world points lie in front of both of the cameras(chirality
condition). Using this, we obtained the actual camera pose.

D. Linear and Non Linear Triangulation with Chirality:

After decomposing the essential matrix, linear triangulation
with Chirality constraints was employed to eliminate three
implausible camera pose configurations. Upon determining
the actual camera pose configuration, we conduct non-linear
optimization to minimize the reprojection error and enhance
the estimation of the features’ world coordinates. Figure 2



compares the outcomes of linear and non-linear triangula-
tion, highlighting the considerable enhancement in accuracy
achieved through non-linear triangulation.

Fig. 2. Linear and Non-Linear Triangulation for Images 2_3 and 2_1

E. Perpective-n-Points:

To incorporate features from a third or more images into
the constructed scene, we initially employed PnP RANSAC to
eliminate outlier features from the third image. This process
aimed to minimize the algebraic error between the measured
and reprojected features. Utilizing the remaining inlier fea-
tures, we computed the estimated camera pose for the third
image.

However, due to the inherent nonlinearity in the division and
reprojection within our system, the estimated camera poses are
prone to inaccuracies. To refine these estimates, we utilized
the estimated camera poses from linear PnP as initial guesses
and conducted non-linear optimization. This optimization min-
imized the geometric reprojection error, resulting in more
precise estimations of the camera poses.

F. Bundle Adjustment:

The next step is to refine the poses and 3D points simul-
taneously through bundle adjustment. Utilizing the camera
poses and 3D points obtained from the previous steps as

initial estimates, we minimize the reprojection error using
least_squares. Figure 3 displays the outcome of the bundle
adjustment process.

Fig. 3. Bundle Adjustment

Al
table:

—

the reprojection errors are mentioned in the following

TABLE I
REPROJECTION ERRORS

Method Reprojection Error
Linear Triangulation 26.04
Nonlinear Triangulation 25.7
Linear PnP 2720.6
Nonlinear PnP 381.09




