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Abstract—This project seeks to utilize traditional computer
vision techniques to reconstruct 3D scenes and estimate camera
poses via a method known as Structure from Motion (SfM). SfM
leverages a sequence of 2D images to reconstruct the 3D structure
of a scene, creating point cloud-based 3D models.

I. INTRODUCTION

This project focuses on constructing a 3D scene from 2D
images and simultaneously obtaining the camera poses of a
monocular camera. This procedure is called Structure of Mo-
tion (SfM). We create an entire rigid structure from a set of
images with different view points (or equivalently a camera in
motion). In this method, we implemented the classical methods
to reconstruct a 3-Dimensional scene from only images and
the intrinsic parameters of the camera which captured them.
The steps employed for this task are: estimating fundamental
matrix, essential matrix, triangulating 3D points, performing
perspective-n-points and then bundle adjustment

II. PHASE I : CLASSICAL APPROACH TO THE SFM

A. Feature Matching

The initial stage of our pipeline is to obtain feature matches
between every pair of monocular camera images. For this,
we used SIFT algorithm, this process begins after the camera
intrinsic matrix is determined through a calibration procedure,
and then distortion is removed from the images. We have these
stored in a text filed named matching, but it has some repeated
points. Therefore we removed those points and updated texxt
files with no repetition.

Fig. 1. Feature Matching before RANSAC

B. Estimating Fundamental Matrix

The fundamental matrix is denoted by F , a 3x3 matrix with
rank of 2 which corresponds to set of points of same image with
different views This is achieved by using the Epipolar constraint
(x

′T
i Fxi = 0).

Fig. 2. Epipolar Lines on Images

Singular value decomposition (SVD) is used to solve a system
of linear equations represented by the Fundamental matrix that
has nine unknowns. Once the system has been solved, the last
singular value is set to zero, and the Fundamental matrix is
recalculated in order to enforce the rank constraint we have
with us.

C. RANSAC

As the the point correspondences are calculated through fea-
ture descriptors, there is some noise in the data and contain one
to multiple outliers. To solve this issue of incorrect macthing,
we employed the RANSAC algorithm to get a more accurate
estimation of the matrix.This process is repeated until we get
the best inliers. Thus, the F matrix with the greatest number of
inliers is selected out of all the options.

Fig. 3. After applying RANSAC
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D. Estimating Camera Poses

Camera pose has 6 degrees of freedom 3 for rotation and 3
for translation. With the help of Essential Matrix we obtain the
camera poses by decomposing the essential matrix.The camera
pose can be expressed as P = KR[I3×3 − C].

E = UDVT

W =

0 −1 0
1 0 0
0 0 1


This gives us four geometric poses which is represented as:
C1 = U(:, 3)andR1 = UWV T

C2 = −U(:, 3)andR2 = UWV T

C3 = U(:, 3)andR3 = UWTV T

C4 = −U(:, 3)andR4 = UWTV T

E. Triangulation Check for Cheirality Condition

We have two camera poses, (C1, R1) and (C2, R2), and cor-
respondences, x1 ↔ x2. With the help of SVD, we triangulate
the 2D points into 3D points. For that, we require one pose.
Though all 4 poses are theoretically correct, we need one which
is practically correct. To obtain this pose, we use the Cheirality
constraint, to check the sign of the depth Z in the camera
coordinate system with respect to the camera center. A 3D point
X is considered to be in front of the camera if the following
constraint holds: r3(X − C) > 0, where r3 is the third row of
the rotation matrix. This process provides the best camera pose
in the configuration (C,R,X).

Fig. 4. Linear Triangulation

F. Non - Linear triangulation

We get the projection of 2D points in 3D which has low
algebraic errors but it has some re-projection errors. For this
we used Non-linear triangulation. To reduce the re-projection
error, we therefore modify the locations of 3D points which
were estimated by the linear triangulation using Scipy.optimize
function. The error between measurement and re-projection
error is given by:

min
x

∑
j=1,2

(
uj − P jT

1 X̃

P jT
3 X̃

)2

+

(
vj − P j

2TX̃

P jT
3 X̃

)2

Where, j is the index of each camera, X̃ is the homogeneous
representation of X. PT

i is each row of camera projection matrix.

Fig. 5. Linear and Non-Linear Triangulation Between Image 1 and 2

G. Perspective-n-Points (PnP)

Now, since we have a set of n 3D points in the world, their 2D
projections in the image, the intrinsic parameter and the 6 DOF
camera pose. we can perform linear PnP on the features obtained
from non-linear triangulation. The 2D points are normalized
using K−1 x. For this we need 6 corresponding 2D and 3D
points of the images and with that we can calculate the camera
pose.

However, this camera pose is prone to error as there are
outliers in the given set of point correspondences. To overcome
this error, we again use RANSAC to make our camera pose
more robust to outliers.

The problem after applying RANSAC is the same as in
linear triangulation which did not account for geometric errors.
Therefore we use Non-Linear PnP i.e., we refine the camera
pose by minimizing the re-projection error which is calculated
by :

min
C,q

∑
i=1,j

(
uj − P jT

1 X̃j

P jT
3 X̃j

)2

+

(
vj − P j

2TX̃j

P jT
3 X̃j

)2

where X̃ is the homogeneous representation of X. PT
i is each

row of camera projection matrix, P which is given by P =
KR[I3×3 − C]. This form used quarternions to optimize error
and can thus be classified as non-linear PnP.

H. Bundle Adjustment and Visibility Matrix

For bundle adjustment we need a visibility matrix which is
denoted by V, a I×J binary matrix which represents relationship
between a camera and point, where Vij is one if the jth point
is visible from the ith camera.

Given initialized camera poses and 3D points, we need refine
them by minimizing reprojection error, which is achieved by
the bundle adjustment, it refines camera poses and 3D points
simultaneously by minimizing the reprojection error over

CI
ii=1

, qIii=1
andXJ

jj=1

This minimization can be solved using a nonlinear optimization
function scipy.optimize.leastsq it will be slow as the number of



(a) Between 1 and 3 (b) Between 1 and 4 (c) Between 1 and 5

Fig. 6. Linear and Non-Linear Triangulation

Fig. 7. Linear Re-Projection

parameters are more. This method enhances accuracy, consis-
tency, and reliability of the final 3D models by removing outliers
from initial reconstructions through iterative optimization.

I. Results and Conclusion

The Fundamental matrix, we got is:

F =

−3.040358e− 08 3.04345118e− 05 −1.283866e− 02
−3.292413e− 05 −2.843426e− 06 3.441946e− 02
1.471827e− 02 −3.275501e− 02 −9.986796e− 01


The Essential matrix, we got is:

E =

 −0.0030538 0.59831704 −0.11984659
−0.64856261 −0.04978099 0.74501285
0.16599481 −0.78821197 −0.02561337



Fig. 8. Non-Linear Re-Projection

Fig. 9. Before and After Bundle Adjustment on Images 1, 2, 3

Images 1-2 1-3 1-4 1-5

LT 862938705.88 64596.83 10319.07 747575.29

N-LT 286.31 7530.89 2796.20 4703.14

LPnP NaN 6186.84 86960.44 29669.30

N-LPnP NaN 11655.89 35346.66 90847.69

TABLE I
LINEAR AND NON-LINEAR ERRORS BETWEEN IMAGE 1 AND ALL THE

REMAINING IMAGES



Fig. 10. Before and After Bundle Adjustment
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