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Abstract—The report outlines the implementation of end-to-
end pipeline for Structure from motion (SfM).

I. PHASE 1: STRUCTURE FROM MOTION

The main goal of this project is to implement Structure
from Motion (SfM) to reconstruct a three-dimensional scene
from a series of two-dimensional images captured from differ-
ent viewpoints, while simultaneously determining the camera
poses relative to the scene. Our implementation of the SfM
pipeline is as follows:

1) Feature Matching and Outlier rejection using RANSAC.
2) Estimating Fundamental Matrix.
3) Estimating Essential Matrix.
4) Estimate Camera Pose from Essential Matrix.
5) Check for Cheirality Condition using Triangulation
6) Non-Linear Triangulation
7) Perspective-n-Point
8) Bundle Adjustment
Each section provides a detailed explanation of the method-

ology employed and the resulting output of the images.

A. Feature Matching and Outlier rejection using RANSAC

Since Structure from Motion (SfM) relies heavily on
good features and their matching, Scale-Invariant Feature
Transform (SIFT) keypoints and descriptors are used. These
feature correspondences were provided in the format of a
.txt file. The data folder contains 4 matching files named
matching*.txt where * refers to numbers from 1 to 5. For
example, matching3.txt contains the matching between
the third image and images that come after (such as images 4
and 5), i.e., I3 ↔ I4, I3 ↔ I5.

Each matching file, denoted as matchingi.txt, outlines
feature correspondences for the ith image as follows:

nFeatures: The total number of features in the ith image.
Each subsequent row details matches for a specific feature in
this image.

Row Format: [Number of matches] [R] [G] [B] [ucurrent]
[vcurrent] [Image ID] [umatch] [vmatch] ...

For example, in matching1.txt with 3930 features, a
row might read: ‘2 255 255 255 5.08304 116.978 3 49.0748
166.783‘, indicating two matches for a given feature, each with
RGB values, coordinates in the current and matching images.

To ensure the reliability of these correspondences, we
implemented a two-tier outlier rejection strategy. The initial
layer employs RANSAC with a homography model to filter
mismatches. Following this, a second layer of rejection uti-
lizes the fundamental matrix RANSAC, further refining the
matches. This dual-layer approach significantly enhances the
accuracy of feature matching, laying a solid foundation for
subsequent SfM processes.

Fig. 1: Feature Matches before RANSAC

Fig. 2: Feature Matches after Homography RANSAC

Fig. 3: Feature Matches after 8-point RANSAC



B. Estimating the Fundamental Matrix

The second phase in our computational pipeline focuses
on estimating the Fundamental Matrix (F ) between pairs of
images, guided by the epipolar constraint. This estimation
leverages the feature correspondences refined through homog-
raphy RANSAC.

The epipolar constraint underpins the geometric relationship
between corresponding points across two views given by:

xT
2 Fx1 = 0

where x1 = [u1, v1, 1]
T and x2 = [u2, v2, 1]

T represent the
homogeneous coordinates of matching points in the first and
second image, respectively.

To compute F , we employed the 8-point algorithm, supple-
mented with a Singular Value Decomposition (SVD) cleanup
step to enforce a rank-2 constraint on F . RANSAC method is
then applied to this preliminary estimation to robustly identify
inliers and reject outliers. The threshold for distinguishing
inliers from outliers is set by the condition:

|xT
2 Fx1| < ϵ

where ϵ is a predefined threshold, x2 are the coordinates of
a feature in the second image, and x1 are the coordinates of
the corresponding feature in the first image. Once inliers are
identified (from Fig. 3), a final estimation of the Fundamental
Matrix is computed using all inliers and the 8-point algorithm.
This final step, again incorporating an SVD cleanup, ensures
the F matrix accurately reflects the underlying epipolar ge-
ometry between the two images. Fig 4 shows the respective
epipolar lines derived from the computed Fundamental matrix.

Fig. 4: Epipolar Lines

C. Estimating Essential Matrix

Following the estimation of the Fundamental Matrix (F )
between a pair of images, we proceed to calculate the Essential
Matrix (E) using the camera intrinsic parameters (K) obtained
from camera calibration. The calculation of E is straightfor-
ward, defined by the equation:

E = KTFK

However, to account for potential noise in the calculated E,
we apply a refinement step using Singular Value Decomposi-
tion (SVD) and rank reduction. Specifically, we decompose E
into UDV T , and then adjust D to enforce the rank-2 constraint
essential for the Essential Matrix. This adjustment is done by
replacing D with a diagonal matrix:

D =

1 0 0
0 1 0
0 0 0


D. Estimate Camera Pose from Essential Matrix.

Following the calculation of the Essential Matrix E =
UDV T , we define W as:

W =

0 −1 0
1 0 0
0 0 1

 .

Utilizing W , we derive four possible camera configurations:
• C1 = U(:, 3) and R1 = UWV T ,
• C2 = −U(:, 3) and R2 = UWV T ,
• C3 = U(:, 3) and R3 = UWTV T ,
• C4 = −U(:, 3) and R4 = UWTV T .
These configurations as seen in Fig. 5 represent the potential

orientations and positions of the second camera relative to the
first, calculated from the Essential Matrix decomposition.

Fig. 5: Possible camera pose configurations

E. Check for Cheirality Condition using Triangulation

After computing four potential camera poses using the
essential matrix, we focus on triangulating 3D points from
two camera poses and correspondences through linear least
squares.

Cheirality Condition: To identify the correct camera pose,
we apply the cheirality condition, ensuring that reconstructed
3D points lie in front of both cameras. A point X is considered
in front if r3(X − C) > 0, where r3 is the third row of the



rotation matrix, representing the camera’s z-axis. This step is
crucial due to correspondence noise, and the optimal pose is
determined by maximizing the number of points satisfying this
condition.

F. Non-Linear Triangulation

With the camera poses and linearly triangulated points X ,
we refine their positions to minimize reprojection error, a
more geometrically meaningful metric than the algebraic error
minimized in linear triangulation. The minimization problem
is formulated as:

min
x

∑
j=1,2

(uj −
PT1
j X̃

PT3
j X̃

)2

+

(
vj −

PT2
j X̃

PT3
j X̃

)2


where j indexes the cameras, X̃ is in homogeneous
coordinates, and PT

i are rows of the camera projection
matrix P . This nonlinear optimization starts with an ini-
tial guess from linear triangulation and was solved using
scipy.optimize.least_squares in the Scipy library.

Fig. 6: Linear and Non-linear triangulations

Fig. 7: Linear triangulation reprojection error

G. Perspective-n-Points (PnP)

With optimized world coordinates from two camera frames
established, we extended our pose estimation to the other three
frames using all available image data. The camera poses were
computed through a series of steps:

Fig. 8: Non-linear triangulation reprojection error

1) Linear PnP: A linear least squares problem was formu-
lated with a minimum of 6 point correspondences (to-
taling 12 correspondences) to determine the new camera
pose parameters R and T . Singular Value Decomposi-
tion (SVD) facilitated the extraction of these values from
the last row of V T obtained from the decomposition.

2) PnP RANSAC: Given the vulnerability of PnP to out-
liers, a robust camera pose estimation was implemented.
Points yielding a reprojection error below a defined
threshold ϵ were classified as inliers, contributing to
a more stable pose estimation. Reprojection error was
calculated using,

min
C,R

∑
i=1,J

(uj −
PT1
j X̃j

PT3
j X̃j

)2

+

(
vj −

PT2
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3) Nonlinear PnP: We refined the camera pose by mini-
mizing geometric loss through a nonlinear least squares
method, analogous to the process used in triangulation.

The nonlinear PnP approach yielded relative camera poses
for each frame, which, when plotted alongside the triangulated
points, provided a comprehensive visualization as seen in Fig.
10.

Fig. 9: Linear PnP with camera poses

H. Bundle Adjustment

Once we have the camera poses and the world coordi-
nates, we proceed to refine them using Bundle Adjustment,



Fig. 10: Non-linear PnP with camera poses

TABLE I: Reprojection error (pixel)

Method Error
Linear Triangulation 164.0128
Nonlinear Triangulation 11.4748
Linear PnP 21.6213
Nonlinear PnP 10.9486

optimizing the camera and point positions concurrently. We
utilize Scipy’s least square optimizer for Bundle Adjustment,
similar to earlier sections. The visibility matrix informs which
Jacobians are necessary, optimizing computational efficiency.
The core objective is to minimize reprojection error, the
discrepancy between observed image points and their corre-
sponding projected 3D points. This is achieved by iterative
adjustments to both camera poses and 3D points, with the pro-
cess continuing until the error reaches a satisfactory minimum.
Bundle Adjustment not only diminishes reprojection error but
also enhances the accuracy and consistency of the 3D model.
It can further assist in outlier detection and correction from
the initial reconstructions.

We perform Bundle Adjustment following the Large Scale
BA in SciPy. This article uses the Rodrigues’ Rotation For-
mula to convert the rotation matrix to three element rotation
vector. We observe that the results after bundle adjustment are
almost similar to the ones before.

Fig. 11: Before (red) and After (blue) Bundle Adjustment, with
camera poses

https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
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