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Abstract—This project implements Structure from Motion
(SfM) algorithm to reconstruct three-dimensional scenes and
estimate camera poses from a set of images. SfM leverages a series
of two-dimensional images captured from different viewpoints or
a moving camera to come up with a cohesive, rigid structure
of the scene. By employing principles found in stereoscopic
photogrammetry, SfM calculates the relative three-dimensional
poses of objects through triangulation methods, ultimately giving
us point cloud-based 3D models.

I. INTRODUCION

Structure from Motion (SfM) is a computer vision tech-
nique used for reconstructing three-dimensional scenes and
estimating camera poses from a sequence of images. It in-
volves several interconnected steps that collectively enable
the generation of accurate 3D point clouds (not necessarily
to scale). These steps typically include feature matching and
outlier rejection using methods such as Random Sample
Consensus (RANSAC), estimating the Fundamental Matrix,
deriving the Essential Matrix from the Fundamental Matrix,
and subsequently estimating camera poses. Furthermore, we
check for the Cheirality Condition through triangulation, em-
ploying techniques like Perspective-n-Point (PnP), and per-
forming Bundle Adjustment to refine the reconstructed scene
and camera parameters.

II. NOVELTY IN THIS WORK

Pytorch is one true optimization library
• Pytorch is used for all the linear algebra work and

optimization work.
• Most of our code is vectorized to increase the perfor-

mance greatly. Vectorized code runs faster because of
SIMD optimization.

III. GIVEN FEATURE MATCHING DATASET

The SIFT feature matches were provided in a text file, which
we parse to extract the relevant information. The matches are
then displayed as shown in Fig. 1. This contains a lot of noisy
data or wrong matches.

Fig. 1: Example of SIFT feature matches

IV. ESTIMATING FUNDAMENTAL MATRIX

In the subject of stereo geometry, the positions of two
cameras are bound by an epipolar constraint. This constraint
says that if a 3D point is projected onto one camera pose,
its corresponding projection onto the other pose must align
along a specific line. The interconnection between these two
projections is given by the Fundamental matrix. Comprising
9 unknowns, the Fundamental matrix is a representation of
a system of linear equations, typically solved using Singu-
lar Value Decomposition (SVD). Following the solution of
this system, the rank constraint is imposed manually. We
then employ a RANSAC (Random Sample Consensus) al-
gorithm to randomly select eight correspondences from the
list of features. We then compute the fundamental matrix
and evaluate the number of inliers by applying the condition
xT
2 Fx1 < thresh. Upon identifying the maximum count

of inliers, we utilize the corresponding fundamental matrix,
which optimally maximizes the inlier count, to discard outliers.
These outliers, are basically noisy correspondences within
the provided SIFT matches, which are effectively filtered out
based on this process. The final output post this process is
shown in Fig. 2.

V. ESTIMATING ESSENTIAL MATRIX

Next, we estimate the Essential Matrix (E), another 3x3
matrix. E can be easily extracted algebraically, E = KTFK,
where K denotes the camera calibration or intrinsic matrix
which has already been provided to us. However, the diagonal



Fig. 2: Post RANSAC matches

values of E may deviate from the ideal (1, 1, 0) configu-
ration due to inherent noise within K. To solve this issue,
we decompose E and then reconstruct it as expressed by

E = U

1 0 0
0 1 0
0 0 0

V T as was provided in the assignment

guidelines.

VI. ESTIMATING CAMERA POSE FROM ESSENTIAL
MATRIX

With the calculated Essential matrix denoted as E =
UDV T , and defining W as:

W =

0 −1 0
1 0 0
0 0 1


We can compute the four (mathematically) possible camera

configurations as follows:
1) C1 = U(:, 3) and R1 = UWV T

2) C2 = −U(:, 3) and R2 = UWV T

3) C3 = U(:, 3) and R3 = UWTV T

4) C4 = −U(:, 3) and R4 = UWV T

VII. DISAMBIGUATE CAMERA POSE

After identifying the four potential camera pose configura-
tions by decomposing the essential matrix in the preceding
step, we used linear triangulation with Cheirality constraints
to eliminate three impossible camera poses. Although all these
poses are theoretically/mathematically valid, only one camera
pose is practically feasible; i.e the ”correct” camera pose is
one where maximum of the 3D world point X lies in front
of the camera. This circumstance occurs under the condition
r3(X − C) > 0, where r3 represents the third row of the
rotation matrix (the z-axis of the camera). By applying this
condition, we figured out the correct camera pose.

VIII. LINEAR AND NON-LINEAR TRIANGULATION

We can first linearly find the 3D points, given sets of
matching features using two camera poses, (C1, R1) and
(C2, R2), and correspondences, x1 ↔ x2, triangulate 3D
points using linear least squares.

The chosen 3D points serve as starting points for a nonlinear
optimizer, which accounts for the error in reprojecting 3D
points from images. The resulting estimate of the world points
is considerably denser than the original. The reprojection error

Fig. 3: Linear Triangulation

can be calculated by comparing measurements with projected
3D points using the equation:

min
X

∑
j=1,2

(
(uj − PT1

j X̃PT3
j X)2 + (vj − PT2

j X̃PT3
j X)2

)
Here, j denotes the index of each camera, X̃ represents

the homogeneous form of X , and PT
i signifies each row of

the camera projection matrix P . The initial estimate for the
solution, X0. This optimization problem can be tackled using
nonlinear optimization functions like torch.optim.Adam.

Fig. 4: Non-Linear Triangulation

IX. PERSPECTIVE-N-POINTS

The perspective-n-points (PnP) problem involves aligning
the poses of new cameras based on additional images of the
scene, provided that a some number of world points are visible
to the original cameras used in the previous processes. It is



Fig. 5: Optimizer loss

presumed that there are outlier matching points from the world
to the new images. Therefore, RANSAC is employed once
again to filter them out.

The chosen 3D points serve as starting points for a nonlinear
optimizer, which accounts for the error in reprojecting 3D
points from images. The resulting estimate of the world points
is considerably denser than the original, clearly showing the
building’s corners in the images.

Fig. 6: Linear PNP with RANSAC

X. BUNDLE ADJUSTMENT

After successfully aligning all five camera poses within the
scene using the provided images, bundle adjustment is done
to enhance the accuracy of both the camera pose estimates
and the 3D world points. This process involves minimizing
reprojection error once again. This iteratively refines the
alignment of the cameras and the representation of the scene
in three dimensions.

Fig. 7: Non-Linear PNP

Fig. 8: Non-Linear PNP

XI. CONCLUSION

In conclusion, the application of Structure from Motion
(SfM) algorithm has proven succesful in reconstructing three-
dimensional scenes and estimating camera poses from a series
of 2D images. Through the fundamental principles of epipolar
geometry, triangulation, and blinear and non-linear PnP, we
have been able to synthesize accurate 3D models from image
data.


