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Abstract—This study introduces a neural network trained
in both supervised and unsupervised manners to estimate the
homography from pairs of grayscale images. The network outputs
shifts in corner points that are used to compute the homography
matrix, demonstrating the efficacy of deep learning for spatial
transformation tasks in computer vision.

I. INTRODUCTION

The estimation of homography is a foundational compo-
nent in computer vision with relevance to tasks like image
alignment and panoramic stitching. Conventional techniques,
reliant on feature matching, are often limited by environmental
and object variability. This paper introduces a deep learning
approach, utilizing a neural network to infer homography
from grayscale image pairs. We evaluate the network under
supervised and unsupervised training regimes, demonstrating
its capability to accurately predict corner point displacements
for homography matrix computation. Our findings highlight
the effectiveness of deep learning in overcoming the challenges
faced by traditional methods, offering a promising direction for
advanced homography estimation.

II. METHODOLOGY

The following subsections include:

1) Data Generation
2) Supervised Approach
3) Unsupervised Approach
4) Stitching Images

A. Data Generation

To train the supervised model, a dataset of image pairs
with precisely known homographies is essential. Acquiring a
vast collection of such images poses a considerable challenge,
and verifying their exact homography is even more arduous.
Therefore, we have created a synthetic dataset derived from the
MS COCO dataset through the following four-step procedure:

1) Initiate by randomly cropping a patch PA with a set of
four corners CA. These corners are then slightly adjusted
to obtain a new set CB . The initial patch size is set to
128× 128, and the corner perturbation is applied using
a random noise within the range [−ρ, ρ], where ρ = 32.

2) Calculate the homography matrix H linking
CA and CB via the OpenCV function
cv2.getPerspectiveTransform(). This

establishes a correspondence such that cB = HcA for
each paired corner position.

3) Apply the inverse homography matrix H−1 to warp the
image and subsequently crop it using the set CA. This
results in a new patch PB .

4) Generate the training data labels H4points as the differ-
ence CB − CA.

By executing the data generation function with any image from
the MS COCO dataset as input, we obtain two patches along
with H4points to serve as training data. We generate 4 patched
from each training image. Fig. 1 shows the input set of patches
generated for the network to train on.

B. Supervised Approach

The neural network’s architecture is identical to the VGG
structure referenced in [1] and depicted in Fig. 13. Each
convolutional layer is succeeded by a BatchNorm2D layer and
then a ReLU layer. We have also put two dropout layer in the
network. One after the final convolution layer with a dropout
value of 0.4, second one is after the first fully connected layer
with a dropout value of 0.4. The output layer consists of eight
linear units that yield the estimated H4points. The architecture
can be seen in fig. 2. We define the loss function as the
L2 norm of the difference between the network’s predicted
Ĥ4points and the actual ground truth H4points:

L2-loss = ||Ĥ4points −H4points||2 (1)

A minibatch size of 64 is utilized along with the SGD
optimizer set at a learning rate of 0.005 and momentum of
0.9. The learning rate is scheduled to decrease by a factor
of 10 after every 30000 iterations, throughout the course of
100 training epochs. Each epoch consists of 20000 images
synthesized from the MS COCO dataset, by varying the
perturbations acting as a data augmentation technique.

Fig. 3 shows the training loss per batch for every epoch and
fig. 4 shows the validation loss per batch for every epoch.

Fig. 5 shows the result of supervised approach on one set
of training images.

C. Unsupervised Approach

For unsupervised learning, the network’s structure is identi-
cal to that utilized in the supervised methodology, eliminating
the need for actual H4points. The loss is instead evaluated



Fig. 1: Input set of patches generated as dataset

through the photometric error between the warped input patch
PB and the neural network’s output patch f(PA), which is
processed using the predicted Ĥ4points:

L1-loss = |f(PA)− PB | (2)

The unsupervised technique includes two novel
stages. Initially, the tensor DLT process converts
Ĥ4points into the homography matrix H, as described
in [2]. Unlike the cv2.getPerspectiveTransform()
function, this tensor-based method allows for gradient
tracking essential for learning. Subsequently, the input
patch PA is warped to generate f(PA), utilizing
kornia.geometry.transform.HomographyWarper()
rather than a spatial transformer network.

Training for the unsupervised model follows parameters
akin to the supervised approach and it was trained for 100
Epochs as well.

D. Stitching Images

In the supervised approach, once we obtain the network-
generated Ĥ4points, we stitch them using the approach fol-

Fig. 2: Model Architecture



Fig. 3: Train Loss

Fig. 4: Validation Loss

lowed in phase 1 of this project.
1) Determine the homography between the first and second

images.
2) Apply the homography to the four corner points of the

first image to ascertain the necessary translations.
3) Calculate the minimum and maximum x and y transla-

tions for the image.
4) Formulate a homography matrix specific to the transla-

tion and integrate it with the initial homography.
5) Warp the first image using this refined homography

and then stitch it with the second image to create the
panorama.

Fig. 5: Result of supervised network after stitching

Fig. 6: Final stitched image for test image 1

Fig. 7: Final stitched image for test image 2

In the unsupervised approach, since the model is the same,
we use the same approach to get the homography and stitch
the images together.

III. RESULTS

Fig. 6 and Fig. 7 shows the result of stitching using the
supervised network for the Test set. We can see that the
network correctly estimates the homography and stitches both
the patches. We can see that the bottom part of knife is added
in the stitched image(fig. 6) and the top part of the seat and the
side wall is added in the stitched image(fig. 7). Fig. 8 shows
the output bounding boxes for the supervised and unsupervised
networks respectively. So does fig. 9 for another test image.
The white box is the output of network and black box is the
ground truth. We can see that the predicted corners of patch
B resembles very closely to the ground truth, showing that
the network learned well. Table 1 shows the EPE error and
runtime for the two networks over the different datasets. We
can see that the unsupervised network did not perform as well
as the supervised network. The performance can be improved
by training the network for a longer time and by tuning the
model parameters.

Fig. 8: Output bounding box for the two networks for test
image



Fig. 9: Output bounding box for the two networks for test
image

EPE (pixel) Run time (ms)

Supervised - Train 8.4 0.4
Supervised - Val 11.7 0.4
Supervised - Test 12.1 0.4
Unsupervised - Train 34.1 0.4
Unsupervised - Val 38.9 0.4
Unsupervised - Test 38.3 0.4

TABLE I: Evaluation metrics for Supervised and Unsupervised
models for the different datasets
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