
Project 1 - MyAutoPano
Phase 2 - Deep Learning Approach

Manoj Velmurugan∗, Rishabh Singh†
Robotics Engineering

Worcester Polytechnic Institute
Email: ∗v.manoj1996@gmail.com, †rsingh8@gmail.com

Abstract—This work presents a comprehensive exploration of
homography estimation using both supervised and unsupervised
learning approaches. A curated dataset was meticulously gen-
erated to train the homography model, ensuring exposure to
diverse scenarios. Remarkably, both methodologies, supervised
and unsupervised, exhibited good accuracy in homography esti-
mation. The unsupervised approach introduced a Differentiable
Pseudo Inverse-based Direct Linear Transform (DLT) algorithm,
enhancing the model’s robustness.

The supervised learning-trained model demonstrated its ef-
ficacy in stitching images, showcasing the practical utility of
the homography model. This work amalgamates the strengths
of supervised and unsupervised learning strategies, offering a
versatile framework for homography estimation and real-world
image stitching applications.

One late day was used!

I. KEY CONTRIBUTIONS

• Input image size choice: Our network processes
(256,256) size images instead of (128,128) to preserve
crucial features from the input images.

• Implementation of Pseudo Inverse-based Differen-
tiable Direct Linear Transform (DLT): This work
incorporates a Pseudo Inverse-based differentiable Direct
Linear Transform (DLT) approach.

• Loss computation focused on the center region in
unsupervised learning: In unsupervised learning, the
loss is computed exclusively for the central region of the
image to mitigate issues related to black regions.

• Utilization of HDF5 file format for training efficiency:
The HDF5 file format is employed to store and access
data efficiently during training, reducing disk access time.

II. DATA GENERATION

To train a Convolutional Neural Network (CNN) called
HomographyNet for estimating homography between image
pairs, synthetic data generation is essential. The MSCOCO
dataset, known for its diverse natural scenes, provides a
suitable source.
In this work, training and validation - images and labels were
obtained by the following,

• Resize: Resize the input image to a fixed size of (512,
512).

• Random Subpatch Selection: Randomly choose a trans-
lation and perturbation for a subpatch of size (256, 256)
located at the center of the resized image.

Fig. 1: Sample validation image with corners overlaid

• Homography Matrix: Obtain the transformation matrix
using cv2.getPerspectiveTransform based on
the chosen translation and perturbation.

• Warp Perspective: Warp the perspective of the resized
image using cv2.warpPerspective with the ob-
tained homography matrix.

• Crop Center Portions: Crop the center portions of both
the original (512, 512) size image and the transformed
image to obtain patches.

• Homography Calculation: Subtract the patch corners to
obtain the H4pt (homography matrix represented by four
corner points).

• Data Storage: Dump the contents, including the original
image, transformed image, and H4pt, into an HDF5 file
for improved training performance.

A sample generated image along with 4 corners is shown
in the figure 1.

Our training dataset contained 60000 samples and testing/-
validation dataset contained 12000 samples.

III. HOMOGRAPHY NETWORK

A Convolutional Neural Network (CNN) was formulated to
compute H4 points from grayscale images of size 256× 256.
The loss function used is a simple L2 loss between the
predicted 4-point homography Ĥ4 and the ground truth
4-point homography H4. The loss function l is given by
l = ||Ĥ4 −H4||2.

The estimation pipeline is shown in figure 2.
The network architecture is shown in figure 3 and specifi-

cation is tabulated in table I. Using any simpler model, results



Fig. 2: Overview of supervised homography

Parameter count 1.081M
Kernel size (3,3)

Conv layer count 10
Input size (batch, 2, 256, 256)

TABLE I: Homography Network Specification

in higher loss value. Dropout was added to the fully connected
layers to improve generalization.

A. Training

The model was trained with some initial learning rate
like 2e-3. It was reduced down to 1e-4 in between training.
Reduced training rate did not seem to help and to speed up
training, the rate was increased to 2e-3. Complete list of hyper
parameters can be found in table II.

Training and validation loss was summed over all the
batches and plotted every epoch (figure 4, figure 5).

B. Homography Result

When there are good features on all 4 corners, the match
is pretty close as shown in figure 6. as expected, the detected
corner transformations are good (figure 6b).
When the features are sparse (such as sky), the detection is
off for a single corner - figure 7.

From the loss curves, the network seems to be still training
and this result is expected to improve in future.

IV. UNSUPERVISED HOMOGRAPHY

In the context of homography estimation, where conven-
tional supervised learning heavily relies on accurately labeled
datasets, the demand for large, precisely annotated datasets

Learning rate 1e-4 to 2e-3 (manually adjusted)
Batch size 2048
Optimizer Adam

Loss function L2 loss
Train epochs 1000

GPU memory usage 6460 MB
Train Batch count 30

Validation Batch count 6

TABLE II: Supervised Learning Hyper Parameters

Epoch 781
avg training loss 385.88

avg test loss 1700.75

TABLE III: Supervised Learning - Loss

Fig. 3: Homography Network Architecture



Fig. 4: Supervised Learning - Training Loss vs Epoch

Fig. 5: Supervised Learning - Validation Loss vs Epoch

(a) Homography: green - label, blue - prediction

(b) Network inputs overlaid with detected boundary transformation

Fig. 6: Supervised learning - Homography for test image 1

(a) Homography: green - label, blue - prediction

(b) Network inputs overlaid with detected boundary transformation

Fig. 7: Supervised learning - Homography for test image 2

can pose significant challenges. However, an alternative ap-
proach emerges with the exploration of unsupervised learning
techniques. Rather than depending on explicit labels, we use
an implicit evaluation strategy for homography estimation.
This novel methodology involves leveraging the predicted
corner points from the homography network to warp images.
By subsequently comparing these warped images with their
originals, we can formulate an unsupervised loss function.
This innovative paradigm allows the network to learn the
underlying spatial transformations implicitly (figure 8). The
ensuing section details the implementation and results of this
unsupervised learning approach, shedding light on its potential
advantages.

A. Algorithm

To facilitate unsupervised learning in homography estima-
tion, the following methodology is used:

1) H4pt Estimate from Homography Network: The
homography network, utilizing the same architecture as
in supervised learning, generates a prediction of the
homography matrix (H4pt) based on the input images.

2) Computation of H Matrix using Pseudo-Inverse: A
differentiable and vectorized approach is adopted to
compute the homography matrix (H) using the pseudo-



Fig. 8: Overview of unsupervised homography

inverse of least squares problem involving H4pt as
shown in listing 1. This enables end-to-end differentia-
bility, crucial for training.

3) Kornia Package for Image Warping: The computed
homography matrix (H) and one of the input images
(A) are passed to the Kornia package. Leveraging its
functionality, the package warps the image (A) to gen-
erate an estimate of the second image (B) based on the
homography transformation.

4) Loss Computation using L1 Function: To evaluate the
dissimilarity between the estimated and original images
(B), a loss function is computed. Both the estimated and
original images are center-cropped to remove undesired
black regions, and the L1 loss function is employed for
loss computation.

1 A = torch.zeros(batchsize, 8, 6).to("cuda"
)

2 # CA is original points, CB is transformed
corner points

3 B = predicted + CA
4 for i in range(0, 4):
5 A[:, 2*i, 0] = CA[:, 2*i]
6 A[:, 2*i, 1] = CA[:, 2*i+1]
7 A[:, 2*i, 2] = 1
8

9 A[:, 2*i+1, 3] = CA[:, 2*i]
10 A[:, 2*i+1, 4] = CA[:, 2*i+1]
11 A[:, 2*i+1, 5] = 1
12 A.requires_grad_(True)
13 B.requires_grad_(True)
14

15 # SOLVE A H = B, where H is 6x1 vector for
each batch

16 Hvec = torch.linalg.pinv(A) @ B.unsqueeze
(-1)

Listing 1: Differentially solving for the first 6 elements of H
matrix

B. Training

The model was trained with some initial learning rate
like 2e-3. It was reduced down to 1e-4 in between training.
Reduced training rate did not seem to help and to speed up
training, the rate was increased to 2e-3. Complete list of hyper
parameters can be found in table IV.

Learning rate 1e-4 to 2e-3 (manually adjusted)
Batch size 2048
Optimizer Adam

Loss function L1 loss
Train epochs 1000

GPU memory usage 15336 MB
Train Batch count 30

Validation Batch count 6

TABLE IV: Unsupervised Learning Hyper Parameters

Fig. 9: Unsupervised Learning - Training Loss (summed over
batches) vs Epoch

Training and validation loss was summed over all the
batches and plotted every epoch (figure 9, figure 10).

C. Homography Result

When there are good features on all 4 corners, the match is
pretty close as shown in figure 11, as expected, the detected
corner transformations are good (figure 11b).
When the features are sparse (such as sky), the detection is
off for a single corner - figure 12.

From the loss curves, the network seems to be still training
and this result is expected to improve in future.

V. IMAGE STITCHING

The blending algorithm is captured below,

Fig. 10: Unsupervised Learning - Validation Loss (summed
over batches) vs Epoch

Epoch 814
avg training loss 0.127

avg test loss 0.138

TABLE V: Supervised Learning - Loss



(a) Homography: green - label, blue - prediction

(b) Network inputs overlaid with detected boundary transformation

Fig. 11: Unsupervised learning - Homography for test image
1

1) Reshape Images: Reshape images 1 and 2 to 256×256.
Find corresponding transformation matrices H1 and H2
for this scaling operation.

2) Convert to Gray Scale and Transform: Convert the
reshaped images to grayscale, transform them to tensors,
and feed them to the neural network.

3) Compute Transformation Matrix H: From the pre-
dicted homography 4-points (H4pts), compute the trans-
formation matrix H .

4) Compute Network Transformation Matrix Hnet:
Compute Hnet = H1·H ·H2−1. This matrix can operate
on the original image irrespective of its shape.

5) Apply Hnet to Image 1: Apply Hnet to img1, shift the
image, and paste it on a large canvas.

6) Apply Hnet to Image 2: Apply Hnet to img2, shift the
image, and paste it on another large canvas.

7) Blend Images: Blend both images using a
weighted average with 0.5 as the weight. Utilize
the cv2.addWeighted function.

The blending result is shown in figure 13. This result was
computed for 998 epoch’s model checkpoint.

(a) Homography: green - label, blue - prediction

(b) Network inputs overlaid with detected boundary transformation

Fig. 12: Unsupervised learning - Homography for test image
2

VI. KEY FINDINGS

• The difference between training loss and test loss is
not significant in unsupervised learning: The marginal
disparity between training loss and test loss in unsuper-
vised learning scenarios suggests that this approach may
mitigate overfitting, leading to improved generalization.

• Unsupervised learning duration compared to super-
vised learning: Unsupervised learning typically requires
a more extended training time in comparison to super-
vised learning. This is attributed to the need for the model
to indirectly infer labels through the optimization process
of gradient descent.

• Training epochs for model usability in image stitching:
Our model necessitated training for 998 epochs to achieve
usability in the context of stitching images.

• Sufficiency of Pseudo Inverse-based Direct Linear
Transform (DLT): The utilization of a Pseudo Inverse-
based Direct Linear Transform (DLT) approach appears
to be adequate for the given task.

VII. CONCLUSION

As detailed above, we undertook the training of a homog-
raphy model employing both supervised and unsupervised



Fig. 13: Stitching using supervised Homography network

approaches. A meticulously crafted dataset was generated
to fuel the iterative training process, ensuring the model’s
exposure to diverse scenarios. Remarkably, both the supervised
and unsupervised methodologies demonstrated good accuracy
in homography estimation. The unsupervised approach lever-
aged a Pseudo Inverse-based Direct Linear Transform (DLT)
algorithm.

In the final stage of our exploration, the model trained
through supervised learning was tested in the real-world task
of stitching images. This application showcases the versatility
and practical utility of the homography model developed in
this study. The supervised and unsupervised learning strate-
gies, coupled with the implementation of a specialized DLT
algorithm, contributes to a comprehensive and robust frame-
work for homography estimation.


