
Project 1 : My AutoPano
Abhijeet Sanjay Rathi

M.S. Robotics
Worcester Polytechnic Institute

Email: asrathi@wpi.edu
Using 1 Late Day

Anuj Jagetia
M.S. Robotics

Worcester Polytechnic Institute
Email: ajagetia@wpi.edu

Using 1 Late Day

Abstract—This project presents a comprehensive exploration of
panoramic image stitching through the integration of two distinct
methodologies: Classical Computer Vision and Deep Learning. The
primary objective is to seamlessly merge two or more images,
leveraging repeated local features for the creation of cohesive
panoramas. In Phase 1, we employ Classical Computer Vision
techniques such as RANSAC, ANMS, and AutoPano to achieve
corner detection, feature matching, and subsequent warping and
blending. Phase 2 delves into the realm of Deep Learning, where
advanced algorithms are implemented to enhance the panorama
stitching process. The amalgamation of these methods contributes
to a robust framework for generating high-quality panoramic
images.

I. INTRODUCTION

Computing the homography transformation matrix between
two pictures serves as a foundation for various computer vision
ideas. This project attempts to construct a homography matrix
between two images by applying the ideas of corner detection,
feature matching, and feature description. It also attempts to
combine and distort these pictures into a smooth panoramic
image. Both the classical approach (Phase 1) and deep learning
networks (Phase 2) have been used to achieve the panorama
effect.

Fig. 1. Overview of Panorama Stitching

II. PHASE I : TRADITIONAL APPROACH

A. Corner Detection

The first stage in our panoramic stitching method is to identify
the corners of the photos we wish to combine.

We decided to use Harris Corners as our corner detection
technique. Greyscale images were created from all of the
colored input photographs. After that, we used cv2.cornerHarris
on every picture to obtain the corners. The outcome of Harris
Corner detection on a collection of photos is displayed in Fig.
3.

Fig. 2. Input Images (Set 1)

Fig. 3. Corner Detection

B. Adaptive Non-Maximal Suppression (ANMS)

It is used to refine the corners we got from Harris Corners.
As the corners we get are very large in numbers and close to
each other.

Refining makes it to equally distributed across the whole
image and by doing this we can reduce the artifacts in the
warping, application of anms is shown in Fig.4.

C. Feature Descriptors

It is used to describe every feature point to a feature vector of
64x1, basically a numerical representation of the visual feature
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Fig. 4. ANMS

in an image.
From the best corners from ANMS. We extracted a 40x40

pixel patches(centered) around the feature point and applied
gaussian blur to the patch by using cv2.GaussianBlur, then we
sampled the blurred output patches to 8x8 and flatten the result
after standardization.

D. Feature Matching

We have successfully acquired and saved the 64x1 feature
vectors that represent the standardized feature descriptors for
every image. The next step is to align the features of the two
pictures we wish to stitch together. We compute the sum of
square differences to all the feature vectors in the second image
for every feature vector in the first image. The best matching pair
is retained if the ratio of that pair to the second best matching
pair was less than a predetermined threshold. Next, we carry out
this action once more for each feature vector in the first image,
output of feature matching is shown in Fig.5.

E. Random Sampling Consesus (RANSAC)

After feature matching we observed that we have some
wrong matching which can cause wrong warping and stitching
of the image ,to remove this RANSAC is applied. Using
cv2.getPerspectiveTransform, we randomly choose a set of four
matched couples to compute homography and then calculated
SSD ( sum squared distance ) which cluster the points as
inliers or outiers, We repeat this step many times and keep
the best inliers and calculate the homography with these inliers
using cv2.findHomography to get the best homography shown
in Fig.6.

Fig. 5. Feature Matching

Fig. 6. Feature Matching after RANSAC

F. Warping and Stitching Images

Between the two images under consideration, the feature
matching helps in the creation of a relative homography matrix.
The (cv2.warpPerspective()) function, which takes the image to
be warped and the homography matrix as arguments, is then
used to warp image 2 with regard to Image 1.



After the images 1 and 2 are warped with respective to each
other (shown in Fig.7), now the stitched image goes as one
image with the image 3 (next image) and the same process is
done till all the images are stitched together to form a single
image on a canvas as displayed in Fig.8.

Fig. 7. Stitched Image of Image 1 and 2

Fig. 8. Final Stitched Image

G. Results and Conclusion

The generated panoramas, which appear to be a single image,
demonstrate the correctness of the homography estimate.

By following these procedures, we may create a full
panorama-style image by stitching together any number of
photographs that feature the same landscape elements.

As the Images are not properly blended i.e. from where 2
images are attached we can see some uneven contrast and lines

in the stitched image, for this we can use different types of
blending to get a smooth panoramic image.

Fig. 9. Stitched Output for Set 2

For test set 2 images, all the points after RANSAC feature
matching were in the black region; therefore, it couldn’t

proceed as the matching was less than the minimum required
points.

III. PHASE II : DEEP LEARNING APPROACH

A. Data Generation

To train the model we need pair of images with known
homography, for this we generated our own synthetic database
by using a small subset of MSCOCO dataset. The reason for
this is, it is very hard to define homography for such a huge
data.

1) Step 1: We obtain a random patch of size 128 x 128 from
an image and named it as Pa, the four corners of the patch is
stored as Ca.

2) Step 2: The corners are then randomly peturbated in
the range (-32,32) and translated and it’s corners are stored
as Cb Using this, we calculated the homography using
(cv2.getPerspectiveTransform()) function.

3) Step 3: We warp the image Ia to get image Ib using
(cv2.warpPerspective) and crop the image with four-
corners and we get a patch Pb. Now we generate the ground
truth H4pt = Ca− Cb.

B. Supervised Model

The regression network suggested in the paper serves as the
foundation for the supervised method applied in this project,
known as HomographyModel, To obtain the anticipated 4-
point homography matrix

∼
H4pt, we supply the ground truth

labels H4Pt for each picture pair as well as the input (stacked
image pairs of PA and PB).

1) Structure of Neural Network: The architecture, imple-
mented in the SuperNet class, is a Convolutional Neural
Network (CNN) comprising eight convolutional layers (conv1
to conv8). Each convolutional layer is followed by batch
normalization and Rectified Linear Unit (ReLU) activation.



Fig. 10. Stitched Output for Set 3

Fig. 11. Set 3 Output after 3 images

After image 2 the homography of Stitched image with image
3 is not valid therefore the image is stretched wrongly when

combined with image 3.
Solution to this problem is to combine image from both the

sides keeping one image as reference image and then join the
stitched image from left and right.

Max-pooling layers with a kernel size of 2 and stride of 2 are
employed for downsampling.

The number of input channels for the first layer is 2 and is
fed with an image of 128X128X2 grayscale image.

After the convolutional layers, the feature maps are flattened
and passed through two fully connected layers (fc1 and fc2).
The network incorporates dropout (dropout) with a rate of
0.5 for regularization.

The final layer outputs an 8-dimensional vector representing

Fig. 12. Stitched Output for TestSet 2

In this case the matching was not proper as the checkers of
the image are similar to each other which makes the code

difficult to find unique corners in the next image and the final
output was ssame as the last image provided for stitching.

the predicted homography parameters. This network is shown
in Fig. 19

2) Loss Function: The loss function for tranining utilizes the
PyTorch nn.MSELoss function. It converts ground truth labels
to float and applies the square root to the calculated MSE loss.
The loss of the model is plotted over epochs and iterations which
is shown in Fig.15 & Fig.16 respectively.

C. Unsupervised Model

The unsupervised neural network in this project is designed to
estimate homographies without explicit ground truth labels. The
network architecture, named UnsuperNet, processes input
images and coordinate batches to predict both a warped patch
(PB_pred) in image B and the 8-dimensional homography
parameters (H4pt_predict).

1) Structure of Neural Network: The architecture follows a
Convolutional Neural Network (CNN) design, featuring eight
convolutional layers (conv1 to conv8). Each convolutional



Fig. 13. Stitched Output for TestSet 3

The output for TestSet 3 was stitched properly compared to
others.

Fig. 14. Stitched Output for TestSet 4

The output for TestSet 4 was stitched properly until there was
overlapping in the images after stitching of image 3, it

couldn’t find any similarity in image 4 as the scene was
different from previous one.

layer is accompanied by batch normalization and Rectified
Linear Unit (ReLU) activation functions. Max-pooling layers
with a kernel size of 2 and stride of 2 are employed for
downsampling the spatial dimensions.

After the convolutional layers, the feature maps undergo
flattening and pass through two fully connected layers (fc1

Fig. 15. Supervised : Loss over Epochs

Fig. 16. Supervised : Loss over Iterations

and fc2). The output of fc2 is an 8-dimensional vector
representing the predicted homography parameters.

A dropout layer (dropout) with a dropout rate of 0.5 is
included for regularization, followed by a warp using Kornia
(warp_perspective) to transform patches from image A
(Pa) based on the predicted homography parameters.

The Tensor_DLT function is utilized for Direct Linear
Transform (DLT) homography estimation, incorporating the
predicted homography parameters (H4pt) and points in image
A (C4pt_A).

2) Loss Function: The loss function for training is L1 loss
(F.l1_loss), measuring the mean absolute error between
the predicted patch in image B (PB_pred) and the ground
truth patch in image B (PB). The loss of the model is plotted
over epochs and iterations which is shown in Fig.17 & Fig.18
respectively.

Model Supervised Unsupervised

Epochs 20 20

Batch Size 50 128

Learning Rate 0.005 0.0001

Optimizer SGD AdamW

EPE 53.383 53.509

D. Deep Learning Stitching

In order to create a panoramic image from the models we
trained, we gave the whole image of size 128X128 into the
model as a single patch, resized it according to the requirement
of the model after giving the input to the model, we did the same
process for consecutive images as we did in Phase 1. which was
stitching image 1 and 2 and then stitch that the output of image



Fig. 17. Unsupervised : Loss over Epochs

Fig. 18. Unsupervised : Loss over Iterations

2 to image 3 and so on. We stacked all the images according to
the CNN network. The output image of the panorama is then
again resized to size 256X256 as the output be the network was
very small because of the stitching of multiple images.The input
and output of the Supervised Model are shown in Fig.20 & Fig.
21 respectively and the input and output of the Unsupervised
Model are shown in Fig.22, 23 & Fig. 24 respectively

E. Results and Outcomes

A comparison between the two methods of homography
estimate performances was conducted and is displayed in Fig.
25 and 26 for Supervised and Unsupervised Model respectively.
The Image overlayed with homography estimated by deep
learning model shown in Green and ground truth is shown in
Blue. In this case the Supervised and Unsupervised approach
yielded almost same estimates.
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Fig. 19. Network Structure



Fig. 20. Input images for Supervised model



Fig. 21. Final Stitched Image Output from Supervised Model

Fig. 22. 10 input images for unsupervised model



Fig. 23. Next 10 input image for Unsupervised model

Fig. 24. Final Stitched Image Output from Unsupervised Model

Fig. 25. Supervised Output for 4 images



Fig. 26. Unsupervised Output for same 4 images as supervised

Fig. 27. Unsupervised Output images

Fig. 28. Input Images (CustomSet 1)

Fig. 29. Output Panorama for CustomSet1
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