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I. PHASE 1: TRADITIONAL APPROACH

The main goal of this phase is to generate a continuous
panorama by merging multiple overlapping images using
traditional techniques. This conventional method underscores
the significance of repeated local features in each image
for effective stitching. The process in the classical approach
involves the following stages:

1) Corner Detection
2) Adaptive Non-Maximal Suppression (ANMS)
3) Feature Descriptor
4) Feature Matching
5) RANSAC for outlier rejection and to estimate Robust

Homography
6) Stitching Images
Each section provides a detailed explanation of the method-

ology employed and the resulting output of the images.

A. Corner Detection

Corner detection lays the groundwork for all subsequent
stages of the image stitching process. Corner detection is a
fundamental and crucial step in image stitching, since they
are robust to various transformations like rotation and scaling,
making them ideal for matching and aligning multiple images.

Our implementation focuses on identifying corners in the
images using the OpenCV Harris corner detection method. We
used a blockSize of 7 as the neighbourhood size for corner
detection. Additionally, the Sobel kernel aperture size is 11
with a Harris detector free parameter as 0.04.

Fig. 1: Harris Corner Detection

B. Adaptive Non-Maximal Suppression (ANMS)

As seen in Figure 1 Harris Corner Detection is effective
in identifying a large number of potential corner points in

an image. However these set of points include many closely
clustered corners and hence is quite dense. Therefore, we
employed ANMS to address this issue by selecting a subset
of the corners based on their strength and spatial distribution.
ANMS is divided in two main steps:

1) Finding the local maxima from the Harris detector
response.

2) Selecting a subset of corners from those obtained from
[1] such that selected corners are evenly distributed
across the image.

For each corner detected in Step 1, the ANMS algorithm
calculates a ’robustness’ measure. This measure is based on
the corner’s strength and its spatial relation to other corners.
Robustness of a corner is determined by the Euclidean distance
to the nearest corner that has a stronger Harris response. A
larger distance implies a higher robustness, indicating that the
corner is not only strong but also spatially isolated from other
strong corners. In areas where corners are densely clustered,
many corners will have a smaller robustness measure since
they are close to other strong corners. The corners are then
sorted based on their robustness measures. Those with the
highest measures are considered the most significant. From
this sorted list, a predetermined number of top corners are
selected. Refer Figure 2 and Figure 3.

C. Feature Descriptor

Following the selection of feature points through ANMS,
the next step is to encode the information at each feature point
into a vector, commonly known as a feature descriptor. Feature
descriptors uniquely represent a feature point, facilitating the
matching process in later stages. For each feature point, we
considered a 41 × 41 patch centered around it and applied
Gaussian blur (kernel size = 5) to it. For considering the
corners at the edges we considered padding of 20 around the
image. We sub-sampled the blurred patch to reduce the size
of the blurred image from 41× 41 to 8× 8. This significantly
reduces the dimensionality of the feature descriptor resulting
into computational efficiency while retaining essential infor-
mation. The resulting 8× 8 matrix is vectorized into a 64× 1
normalized vector.

D. Feature Matching

Next step is establishing correspondences between key-
points in two images to be stitched, based on their respective



Fig. 2: Harris Corner Detection after Local Maxima

Fig. 3: ANMS Output

feature descriptors. For each feature descriptor of the first im-
age we calculate the Euclidean distance to every descriptor in
the second image. The closest and second-closest matches are
identified for each descriptor. To ensure the distinctiveness of
these matches, Lowe’s ratio test is applied. This test compares
the distances of the closest and second-closest matches; if the
ratio of these distances is below a threshold (for us it is 0.75),
the match is deemed valid. This ratio test is critical in reducing
false positives – it ensures that the selected match is not only
the closest but also significantly closer than the next best
match, indicating a high likelihood of it being a correct match.
Matches passing this test are considered as valid matches.

Fig. 4: Feature matching

E. Random Sampling and Consensus (RANSAC)

The feature correspondences obtained are not entirely cor-
rect and consist of a lot of outliers. It is essential to identify

and remove the outliers to ensure accurate homography esti-
mation and ultimately image alignment. For this purpose we
implemented RANSAC with the following steps:

1) Random Selection and Homography Computation:
• Select four pairs of matched features randomly (pi

from image1, p’i from image2).
• Compute the homography H using these points.

2) Inlier Computation:
• For each feature pair, calculate if it is an inlier

by checking if the Sum of Squared Differences
(SSD) between the transformed point Hpi and the
corresponding point in the second image p’i is less
than a threshold τ .

3) Iterations:
• Repeat the above two steps for a maximum of nmax

iterations (we are iterating for 1000 iterations), or
until a certain percentage of inliers (we have set a
threshold of 90%) is achieved.

4) Finilazing Inliers:
• Retain the largest set of inliers obtained from above

iterations.
5) Compute the final Homography:

• Considering all set of inliers obtained from Step 4
re-compute the final homography matrix.

6) Check if the pair of images are valid for stitching:
• Considering all set of inliers obtained from Step 4

we additionally check if the number of inliers are
above a threshold of 4 to deem the stitch as valid
otherwise invalid.

Fig. 5: Feature Matches after RANSAC

F. Stitching and Blending

Once the relative homography between the pair of images
is determined, the next step is to stitch the images. For further
discussion lets consider that the stitching occurs from left to
right. Given two images image1 and image2, image1 is warped
to be stitched with image2. With this context, steps below
outline out approach:



1) Warping image1 with the Homography matrix:
• The homography matrix obtained from RANSAC is

used to transform the corner points of image1.
2) Calculating the canvas dimensions:

• The transformed points of image1 and the original
points of image2 are considered to determine the
total space that the stitched image will occupy.

• This combination of points helps in understanding
the extent to which the images overlap and the
additional space required for the panorama.

3) Computing the Translation Matrix:
• From the set of combined points we determine the

minimum x and y coordinates. These coordinates
indicate how much the stitched image extends in
the negative x and y coordinates.

• A translation matrix is calculated considering these
values which effectively shifts the transformed im-
age (in this case image1) rightwards and/or down-
wards such that entire image falls within positive
quadrant.

4) Applying translation and stitching the image:
• This step involves a warp perspective transforma-

tion, which adjusts the image based on combined
homography and translation matrices. The result is
an image where image1 is transformed and aligned
with image2.

G. Results- Success and Failure Case Analysis

Train Set Cases: Our implemented algorithm successfully
executed the image stitching process for Train Sets 1 and 2.
The stitched output of Train Set2 is illustrated in Figure 7,
while that of Train Set1 is depicted in Figure 8. However, we
encountered challenges with Train Set3, with multiple images.
Initially, we adopted a linear stitching approach, progressing
from left to right. This method proved ineffective beyond the
fourth image in the sequence, leading to significant distortion
and warping.

To address this issue, we revised our approach by initiating
the stitching process from a centrally located image within
the sequence. Train Set3 consists of eight images, with Image4
designated as the central reference point. The revised stitching
methodology was executed in the following steps:

• Starting from Image 4, the algorithm proceeded to stitch
subsequent images in the rightward direction of the
sequence.

• Starting again from Image 4, the stitching process was
conducted in the leftward direction.

• The resulting left and right stitched panoramas were then
combined to form a panaroma.

This strategy successfully stitched Images 2 through 7. How-
ever, Images 1 and 8 presented challenges, again resulting in
excessive warping. The final stitching outcome for Train Set
3 is displayed in Figure 9.

Test Set Cases:

Fig. 6: Train Set 2, first 2 images stitched.

Fig. 7: Train Set 2 full panorama

Fig. 8: Train Set 1 full panorama

TestSet1: For this set we were able to stitch the first two
images. However for the images further in the sequence there
are non-unique correspondences in the image and hence the
images are not suitable for stitching. Figure 10(a) shows the
stitch of Image1 and Image2 in the TestSet. Figure 10(b) shows
the non-unique correspondences in the further images.

TestSet2: Our algorithm is developed for sequential image
stitching (left to right or vice-versa) or from a central image



Fig. 9: Train Set 3 images 2 to 7 stitched

(a) (b)

Fig. 10: TestSet1 Images

to each of the left or right directions. For every image we
have incorporated a feature-matching check. If the number of
feature matches after RANSAC is below a threshold of 4 (since
we need four points for calculating homography), the image
is deemed unsuitable for stitching, and the algorithm proceeds
to the next image in the sequence. So our algorithm is able
to stitch the images in groups. We obtained a stitch of image
groups 1-2-3, 4-5-6 and 7-8 and later stitched these groups
together. However, we feel that the group stitch (1-2-3 with
7-8) fails due to two reasons; first due to very less overlap
between the images and second due to less features (corners)
due to a white background as seen in Figure 11.

TestSet3: Our algorithm was able to stitch TestSet3 suc-
cessfully. Figure 12 shows the final stitched output.

TestSet4: This set consists images seen in Figure 13. We
stitch images 1-3 successfully with the strategy of stitching
sequentially from left to right. Then as mentioned in TestSet2
we are checking the inlier count after RANSAC before final
stitching. If the number of feature matches after RANSAC
is below a threshold of 4 (since we need four points for
calculating homography), the image is deemed unsuitable for
stitching, and the algorithm proceeds to the next image in
the sequence. So our algorithm stitches images 1-3 in a full

Fig. 11: TestSet2 Stitch Failure

Fig. 12: TestSet3 Panaroma

panaroma as seen in Fig. 15 and skips Image4 and Image5.
Figure 14 shows the feature matches of the 1-3 stitch with
Image5 after RANSAC.

Custom Set Cases:
Custom Set 1: This set contains four images seen in Figure

16:
The stitched panorama for these images is seen in Figure

17:
Custom Set 2: This set contains four images seen in Figure

18:
The stitched panaroma for these images is seen in Figure

19:

II. PHASE 2: DEEP LEARNING APPROACH

In this section, we explore two different deep learning
techniques to find the homography between two images to
perform panorama stitching. Specifically, we use Supervised
and Unsupervised training regimes to estimate the 4-point
homography matrix (H4PT ) between the two images.



(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5

Fig. 13: TestSet4 Images

Fig. 14: Feature Matches for TestSet4

A. Data Generation

The training data used for these models is generated from
a small subset of the MS-COCO dataset. The images were
resized to 320× 240 pixels. We created a buffer of 30 pixels
on all sides of the image and then generated 10 patches
per image from the center region, to ensure that we are not
extracting the patch from outside the image after warping. Let
each patch be denoted by PA, and the corners of the patch
be denoted by CA. The corners of these patches were then
perturbed randomly in the range of [−32, 32] pixels, and a
random translation less than 32 pixels was added to generate
the corresponding patches PB , with corners CB . We then
calculate the 4-point homography matrix for these patches,
given by H4PT = CA − CB . We create a dataset containing
50, 000 images in the training set and 10, 000 images in the
validation set. The labels are saved as a dictionary of H4PT

and CA for each image. An example pair of patches PA and

Fig. 15: TestSet4 Panorama

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4

Fig. 16: CustomSet1 Images

PB is shown in Figure 20.

B. Supervised Approach

The network used for the supervised approach has a VGG-
like architecture with 8 convolutional layers and 2 fully
connected layers. The network architecture is shown in Figure
21. The input to the network are 3 channel RGB patches
PA and PB stacked in the depth dimension, with the input
size of 128× 128× 6. The output of the network is an eight
dimensional vector which is defined as the estimated 4-point
homography matrix between the corners of patches PA and
PB . We use the RMSE loss between the ground-truth and
estimated 4-point homography matrices to train the network.
The overview of the supervised approach is shown in Figure
22.

The network is trained for 100 epochs with a batch-size
of 512. We use AdamW optimizer with a learning rate of
0.001 and regularization strength (weight decay) of 0.0001. A



Fig. 17: CustomSet1 Panorama

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4

Fig. 18: CustomSet2 Images

learning rate scheduler is also use which decreases the learning
rate exponentially by a factor of 0.99 after each epoch. The
training and validation loss curves are shown in Figure 23. The
network achieves the best train loss of 7.495 and a validation
loss of 8.65. This network took about 4 hours 15 minutes to
train.

C. Unsupervised Approach

The overview of the supervised approach is shown in Figure
28. The first part of the network is similar to the super-
vised network. Here, the input to the network are grayscale
patches PA and PB stacked in the depth dimension, with
the input size of 128 × 128 × 2, and the output is the
estimated 4-point Homography matrix. This is then added
with the patch corners CA from the training data, and
the result is passed through a TensorDLT function, which
converts them to the Homography matrix H . Instead of
using the Spatial Transformer Network (STN), we use the
kornia.geometry.transform.warp perspective function, which
takes the patch PA and the Homography matrix H as input,
and produces the estimated warped patch PB as output. The

Fig. 19: CustomSet2 Panaroma

Fig. 20: An example of patch PA and randomly perturbed
patch PB .

estimated and the ground-truth patches PB are then compared
to calculate the photometric (L1) loss.

The network is trained for 50 epochs with a batch-size
of 256. We use AdamW optimizer with a learning rate of
0.0001 and regularization strength (weight decay) of 0.0001. A
learning rate scheduler is also use which decreases the learning
rate exponentially by a factor of 0.99 after each epoch. The
training and validation loss curves are shown in Figure 24.
As it is evident from the loss curve, the network struggles to
converge. This network took about 3 hours to train.

After debugging, the main reason for the improper conver-
gence of the network was found to be the improper warping
of patches to create the labels. In our implementation, we pass
the patches PA and PB to the initial regression model. The
resulting 4-point Homography matrix H4PT is then used to
warp the patches PB to find the photometric loss between the
warped patches and the ground-truth patches. But, instead of
warping the patches, the correct approach should be to warp
the original image and re-crop the image with the generated
4-point Homography matrix H4PT .

D. Results and Discussion

To evaluate the performance of the two networks, we
performed comparison studies on the estimated homographies
from both the networks on 4 images. The results of this study
are shown in Figure 25. As it can be seen, the Supervised
network performs better at estimating the homographies as
compared to the Unsupervised network.

Table I shows a quantitative comparison between the two
networks. Here we compare the average training, validation
and testing loss for the two networks. The loss for the
supervised network is calculated as the RMSE loss between
the ground-truth and estimated 4-point homography matrices.
For the unsupervised network, the loss is calculated as the



Fig. 21: Network architecture of the supervised network.

Fig. 22: Training flow chart for supervised network.

photometric loss (L1 loss) between the patches PB warped
with ground-truth homography and the estimated homography.

Train Loss Val Loss Test Loss Inference Time
Supervised 7.495 8.644 7.480 2.2 ms
Unsupervised 46.339 46.462 48.023 6.4ms

TABLE I: Table comparing Supervised network and the un-
supervised network performance.

We also attempt to stitch images using the homographies
estimated from the supervised and the unsupervised neural
networks, and compare it with the results of the classical
stitching method described in Phase 1. The results of the
classical stitching method are shown in Figure 26. As it
can be seen, the panorama generated is quite good. But
when we try to generate the homographies from the deep
neural networks, we see that the homographies estimated are
incorrect, even if the supervised network produced a low
testing loss. The homography matrix has a stronger rotation
effect than a translation effect. Results of stitching 2 images
with the Supervised network are shown in the Figure 27. To
generate this result, the images were first cropped from their
high-definition resolution of 1920×1080 pixels to 1000×1000
pixels. Then, the images were resized to 128× 128 pixels as
an input to the neural network.

We believe that the result is incorrect because the training
data used has more examples with rotational perturbations than
pure translation perturbations. Another reason could be that the
training data is more feature rich as compared to the testing
images. This performance can also be improved by training
the network more thoroughly with a wider range of data, both
in term of features as well as the rotational and translational
perturbations.

Fig. 23: Training and validation loss for the supervised net-
work.

Fig. 24: Training and validation loss for the unsupervised
network.



Fig. 25: Comparison of the estimated homography from the
Supervised and Unsupervised networks, on 4 images. (Red is
ground-truth, green is estimate)

Fig. 26: Images from ”trees” dataset stitched using classical
panorama stitching.

Fig. 27: Images from ”trees” dataset stitched using Homogra-
phy estimation from the Supervised model.



Fig. 28: Training flow chart for unsupervised network.


