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Abstract—This report presents our implementation of classical
and deep learning methodologies for homography estimation and
image stitching. Phase 1 deals with classical approaches wherein
we first discuss Feature extraction and matching and then outlier
removal. Finally, we conclude by presenting our results for
warping and blending. In Phase 2 we discuss supervised and
unsupervised methods for homography estimation. We present
results for comparison and thorough analysis for the same.

I. PHASE - 1 TRADITIONAL APPROACH

A. Methodology

The general pipeline for image stitching using classical
approaches is as follows:

• Corner detection using the Harris Corner method (Section
I-A1).

• Applying Adaptive Non-Maximal Suppression (ANMS)
to obtain robust corners (Section I-A2).

• Describing each of these corner features by a feature
descriptor (Section I-A3).

• Featuring matching across images using these feature
descriptors (Section I-A4).

• Outlier rejection using RANSAC and estimating homog-
raphy between two images using inliers (Section I-A5).

• Stitching and blending the original and warped images
(Section I-A6).

1) Feature Detection: The Harris Corner
(cv2.cornerHarris) function gives a score map indicating the
probability of the pixel being a corner and the Shi Tomasi
method (cv2.goodFeaturesToTrack) gives feature coordinates.
We utilize the corner score map, take the local maxima,
and then use non-maximal suppression (NMS) to get robust
features. The result for the corner score map and Shi-Tomasi
features are illustrated in Figures 1 and 2.

(a) Image - 1 (b) Image - 2

Fig. 1: Corner Maps for Harris Corners

(a) Image - 1 (b) Image - 2

Fig. 2: Shi Tomasi Features

(a) Image - 1 (b) Image - 2

Fig. 3: Adaptive Non-Maximal Suppression on Harris Corners

2) Adaptive Non-Maximal Suppression: Adaptive Non-
Maximal Suppression (ANMS) is a variant of NMS where
the feature set is reduced to a fixed number by eliminating
features that are too close to each other. This is implemented
through an iterative search among the neighborhoods for each
feature by measuring the euclidean distances between them.
We pick out N (here 100) best features based on how spread
out they are. The resultant image is shown in Figure 3.

3) Feature Descriptor: Each feature is assigned a unique
feature descriptor which will be used by the feature matching
algorithm. A patch of size 41×41, centered around the feature,
is subjected to Gaussian Blur and subsampling which reduces
the dimensions to 8 × 8. This reduced patch is flattened to
form a 64 × 1 vector. Finally, we normalize the vector for
illumination invariance.

4) Feature Matching: For feature matching, we employ a
sum of squared differences (SSD) between feature descriptors
corresponding to each feature. Iteratively, it yields the two best
matches in terms of SSD. If the ratio of the best match to the
next best match is above a certain threshold (here 0.8), then
the match is rejected. The result is illustrated by Figure 4



Fig. 4: Feature Matching

Fig. 5: Feature Matching after applying RANSAC

5) Outlier Rejection and Homography Estimation: Naive
feature matching using SSD results in incorrect matches. To
refine these matches, we use RANSAC. We sample M features
(here 4) and estimate the corresponding homography matrix.
We apply this homography to the points of the first image and
compute the SSD between the features in the second image
and the warped image. If it is above a threshold we reject it.
The threshold dynamically increases if the number of inliers is
below 4 after 10000 iterations. At termination, the best set of
inliers is computed, and the corresponding homography matrix
is computed using singular value decomposition (SVD). The
set of inliers generated by RANSAC is illustrated in Figure 5.

6) Blending Images: The second image is warped using the
homography matrix (using cv2.perspectiveTransform). To find
the overlapping region, the width and height of the resultant
image from the limits of the 1st image and the warped 2nd
image are calculated. The homography and limits are then used
in the cv2.warpPerspective to generate the stitched image. This
function uses alpha blending (cv2.INTER LINEAR) which is
the weighted stitching of images.

B. Test Set Results

For Test Set 1 (see Figure 17), the chessboard pattern is
too similar for the feature descriptor and matcher. This means
even after removing the outliers via RANSAC with a high
SSD threshold, the number of inliers is low. Thus stitching is
not achieved. For Test Set 2, there are 9 unordered images.
Computing inliers for each pair of images was done and
the images were stitched for pairs with the highest number
of inliers. This is computationally expensive and due to the

Fig. 6: Panorama Stitching for Set 1

Fig. 7: Panorama Stitching for Set 2

large illumination changes, the inliers were low and images
couldn’t stitch properly. Figure 19 shows the resultant stitched
image for Test Set 3. As the SSD threshold in RANSAC
is dynamically increased, enough inliers are estimated for
satisfactory stitching. In Test Set 4, two images do not belong
to the scene. Our algorithm is not able to compute inliers
between them and thus correctly discard them.

C. Conclusion

In conclusion, our algorithm stitches and blends images
satisfactorily if the images are well and equally illuminated
and there are no repeating patterns.

II. PHASE 2 - DEEP LEARNING

In this section, we present our implementation of learning-
based models for estimating homography between images.
These robust models replace classical approaches for feature



Fig. 8: Panorama Stitching for Set 3: For this set we selected
the middle image as the reference and stitched it in left
and right directions. The left and right stitched images were
blended to form the resultant panorama.

Fig. 9: Validation Loss vs Epochs for Supervised Learning

detection, matching, and homography estimation explained in
the previous section. More specifically, we present our data
generation (Section II-A), supervised model (Section II-B),
and unsupervised model (Section II-C) in this section.

A. Data Generation

The data generation methodology is explained below.

• We define an active region as a patch obtained by
cropping the image, resulting in dimensions (H − 50)×
(W−50), where H and W represent the height and width
of the image, respectively. This cropping implies a border
of 20 pixels on each side of the image.

• A patch Pa (of size 128×128) is generated from an image
Ia such that the top left corner of the patch lies within the

Fig. 10: Validation Loss vs Epochs for Unsupervised Learning

Fig. 11: Overview of the supervised learning methodology.
Patches A and B, generated using the steps mentioned in
II-A, are stacked along the channel dimension. The MSE loss
function uses the ground truth H4pt and the H̃4pt predicted
by the network.

active region. This ensures that the corresponding warped
patch does not have background padding.

• A random perturbation performed in the range [−32, 32]
to each corner to obtain a patch P

′

a.
• Since the corners of Pa (Ca) and P ′

a (Cb) are known, we
can calculate the homography matrix, Hab, between the
patches using the cv2.getPerspectiveTransform function.

• Instead of warping the patch we warp the image to
generate the corresponding warped image, Ib. The cor-
responding warped patch Pb can be extracted from Ib
using Cb.

• We store Ca, Cb, H4pt = Ca−Cb in a JSON file. Data is
generated on the fly during supervised and unsupervised
training. 10 patches were generated for each image in the
MS COCO dataset [1]. The training and validation sets
comprise 49800 and 10000 images respectively.

B. Supervised learning

For supervised learning, we train a CNN-based architecture,
similar to [2]. The architecture is presented in Figure 12.

1) Training Details: The loss function is defined as the
mean square error (MSE) loss between the ground truth H4pt



Fig. 12: Homography Net Architecture for Supervised Learning

and the H̃4pt predicted by the network. The hyperparameters
and the optimizer chosen have been listed in Table I.

2) Results: A plot of the validation loss (MSE) against
epochs is illustrated in Figure 9. We also report the EPE loss
for training, validation, and testing as well the inference time
(per image set) in Table II. The warped images with predicted
and ground truth homography are presented in Figure 23.
Sample results for panorama stitching is shown in Figure 13.

(a) Image - 1 (b) Image - 2

(c) Image - 3

Fig. 13: Panorama Stitching for 2 images for each of the
test set for supervised learning: Images aren’t stitched as pure
translation between the images is not learned by the model.
The resultant homography matrices are estimated incorrectly

Methodology Learning Rate Epochs Batch Size Optimizer
Supervised 0.0001 50 64 AdamW

Unsupervised 0.00001 50 32 AdamW

TABLE I: Optimizer and hyperparmeters for supervised and
unsupervised approaches.

Methodology Metric Train Val Test

Supervised EPE (pixels) 4.208 8.683 9.101
Runtime (secs) 0.0525 0.0545 0.0542

Unsupervised EPE (pixels) 24.942 25.431 20.331
Runtime (secs) 0.0782 0.0793 0.0782

TABLE II: EPE and Runtime for supervised and unsupervised
approaches.

C. Unsupervised Learning

For unsupervised learning, an architecture similar to [3] was
adopted. The supervised network described in the previous
section was used to predict H̃4pt from channel-wise stacked

(a) Image - 1 (b) Image - 2

(c) Image - 3

Fig. 14: Panorama Stitching for 2 images for each of the test
sets for unsupervised learning

Fig. 15: Ground truth Cb indicated in green and Predicted Cb

for supervised learning on sample Test image

image patches. This H̃4pt was converted to H ∈ R3×3

through a differentiable Direct Linear Transform (DLT) layer.
Differentiable warping was implemented using a Spatial Trans-
former Layer (STL) which further comprises of Parameterized
Sampling Grid Generator (PSGG) and Differentiable Sampling
(DS) (We referred to online resources to convert TensorFlow
functions implemented in [3]). All these intermediate layers
were implemented as described in [3]. A high-level diagram
is illustrated in Figure ??.



Fig. 16: Ground truth Cb indicated in green and Predicted Cb

for unsupervised learning on sample Test image

(a) Image - 1 (b) Image - 2

Fig. 17: Panorama Stitching for Test Set 1: Image (b) indicates
the wrong estimation of inliers due to repeating pattern

(a) Image - 1 (b) Image - 2

(c) Image - 3

Fig. 18: Panorama Stitching for Test Set 2: Image(a) and
Image (b) indicate stitching of 2 separate subsequences. Image
(c) indicates the wrong estimation inliers due to illumination
change

Fig. 19: Panorama Stitching for Test Set 3

Fig. 20: Panorama Stitching for Test Set 4

Fig. 21: Panorama Stitching for Custom Data 1



Fig. 22: Panorama Stitching for Custom Data 2

1) Training Details: The loss function is defined as the
photometric loss between the ground truth patch Pb and the
warped patch P

′

b predicted by the network. The hyperparam-
eters and the optimizer chosen have been listed in Table I.
Note that we use a smaller learning rate because the loss was
diverging to NaN after a few epochs.

2) Results: A plot of the validation loss (photometric)
against epochs is illustrated in Figure 10. We also report
the EPE loss for training, validation, and testing as well
the inference time (per image set) in Table II. Finally, the
warped images with predicted and ground truth homography
are presented in Figure 16.

III. CONCLUSION

In conclusion, we have trained supervised and unsupervised
models for homography estimation. As indicated by Table
II, EPE for the supervised model is lower compared to the
unsupervised model. As seen in Figure 16, the unsupervised
model doesn’t learn the homography matrices on the corners
well. The results for panorama stitching for unsupervised
learning are not presented. The panoramas stitched indicate
that the model does not account for translations.
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