
RBE 549 Project 1: MyAutoPano
UdayGirish Maradana

Robotics Engineering (MS)
Worcester Polytechnic Institute

Worcester, MA 01609
Email: umaradana@wpi.edu

Using 2 Late Days

Pradnya Sushil Shinde
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: pshinde1@wpi.edu
Using 2 Late Days

Abstract—The following report consists of a detailed analysis
of a classical algorithm and a Deep Learning approach for
performing image stitching on a set of three or more images. The
work is presented as a part of RBE 549 Project 1: MyAutoPano.

I. INTRODUCTION

The project consists of two phases, Phase 1, which is an
implementation of a traditional approach to image stitching,
and Phase 2, which describes a Deep Learning approach.
Phase 1 follows a procedural flow, to implement panorama
stitching, which includes feature detection, feature descriptors,
feature matching, eliminating outliers and finally blending and
warping of images to form a well-stitched panorama. Phase 2
involves training a Convolutional Neural Network to estimate
homography between a pair of images (we call this network a
HomographyNet). The intricacies involved in both phases are
described in the following sections.

II. PHASE I: TRADITIONAL APPROACH

The overview of panorama stitching using the traditional
approach can be found in Figure 1. To implement the algorithm
for image stitching, we need to relate one image to the other
by deciphering a correlation between the distinctive features
that each of these images may portray. These features or key
points can be defined as corners in the images. Once we obtain
the corners, we can proceed with feature-matching to find the
commonality between the two images. To achieve robustness
in homography, algorithms such as RANSAC are used. At
last a robust model that fits the data is computed, and we
move forward with image warping and blending. The details
regarding the intermediate steps of the algorithm are presented
below.

A. Corner Detection

The first step in the traditional approach is to detect key
points to find correspondences between images. Corners are
good features for finding correspondence as they are distinct
and repeatable. We have used the state-of-the-art Harris-Corner
detection algorithm to detect corners in a set of images. To
implement the corner detection algorithm we make use of
cornerHarris(), imported from the OpenCV library, that takes
a floating-point grayscale image as an input. The results of

Fig. 1: Overview of Traditional Algorithm for Image Stitching

corner detection for the Train Set are given in Figure 2 and
Figure 3.

Fig. 2: Train Set 1: Corner Detection

B. Adaptive Non-Maximal Suppression (ANMS)

The corners obtained in the previous step need to be
uniformly spread out to avoid random artifacts in warping.
Adaptive Non-Maximal Suppression finds the Nbest corners
Nbest = 100 that are equally distributed in the image and at
least 2 pixels apart. The algorithm for implementing ANMS
is shown in Figure 4. The corresponding results of the ANMS
algorithm on the Train Set are shown in the figures below.

C. Feature Descriptor

After extracting Nbest ANMS corners, we move forward to
describing each feature point by a feature vector. We begin by
centering a 64×64 patch around each feature point. Then, this
patch is blurred using GausssianBlur() function of OpenCV
and subsampled to the size of 8 × 8. Finally, we reshape



Fig. 3: Train Set 2: Corner Detection

Fig. 4: Adaptive Non-Maximal Suppression Algorithm

the subsampled patch as a 64 × 1 vector. To remove bias
and achieve illumination invariance, we further standardize the
vector by making its mean zero and variance equal to 1. A
sample of feature descriptor is given in Figure 7.

D. Feature Matching

Once we have each feature point represented as a 64 × 1
vector, we can proceed with matching each of the feature
points in image 1 to feature points in the corresponding image
2. Here, image 1 will be considered as the source image and
needs to be compared with each image in the relevant set. The
criterion for feature matching is that we calculate the squared
distance between each of the corresponding vectors. We then
take the ratio of the lowest distance to the second lowest
distance and if this ratio is less than a certain pre-assigned
factor = 0.7, we then consider that the features match. Figures
8 and 9 show feature-matching results for Set 1 and Set 2
respectively.

E. RANSAC for Outliers Rejection and Robust Homography

The feature matches obtained previously are bound to have
outliers i.e. incorrect matches. We use the Random Sample
Consensus or RANSAC algorithm to remove the outliers and

Fig. 5: Train Set 1: ANMS

Fig. 6: Train Set 2: ANMS

estimate robust tomography. The structure of the RANSAC
algorithm is as follows:

• Four pairs of matching features are selected at random
from image 1, pi and image 2, p′

i.
• Homography matrix H is calculated using

getPerspectiveTransform() of OpenCV by passing
the source (image 1) and destination (image 2) key
points computed in step 1.

• We then proceed to computer inliers where we compare
SSD(p′i, Hpi) < τ where τ is chosen threshold τ = 0.5
and SSD is sum of square difference function.

• Repeat the above steps until we reach the specific number
of iterations or we find out the required number of inliers.
Keep the best set of inliers.

• Recompute the least square estimate Ĥ on all of the
inliers.

Fig. 7: Train Set1 : Feature Matching



F. Image Blending

Once we have with us the homography transformation
matrix from Image 1 to Image 2, we will now move forward
with warping the two images. We begin by retrieving the
corner points from each image. To the corners of the second
image, we apply the homography transformation. Finally,
based on the transformed points, we obtain bounding box
coordinates ((xmin, ymin), (xmax, ymax)). We then define a
translation matrix to adjust the position of the transformed
image. To perform the warping operation of image 2 onto
image 1 with the translated homography matrix, we will use
the warpPerspective() function by OpenCV. Finally, blend
image 1 with the result of warpPerspective(). The panorama
stitching of Train Set 1 and Train Set 2 is shown in Figure 10
and Figure 11.

Fig. 8: Train Set 1: Panorama

The panorama stitching of Test Set 2 and Test Set 3 is shown
in Figure 12 and Figure 13.

Fig. 9: Train Set 2: Panorma

Fig. 10: Train Set 3: Panorama

Fig. 11: Test Set 2: Panorama

The panorama stitching of Test Set 1 failed due to the
similarity in features found. The extent of this similarity is
high and thus it becomes hard to stitch the images. Refer to
feature matching for Test Set 1 in Figure 14 and Figure 15.

III. PHASE II: DEEP LEARNING APPROACH

In Phase 2, we focus on training a neural network model
with supervised as well as unsupervised methods. The deep
learning approach combines corner detection, ANMS, feature
extraction, feature matching, RANSAC, and estimate homog-
raphy all into one. It inputs two grayscale images and provides



Fig. 12: Test Set 3: Panorma

Fig. 13: Test Set 1: Feature Matching

position differences between four corner points of two images
as output. From thereon, the homography matrix can be
calculated. The overview of the Deep Learning approach is
shown in the figure below.

Fig. 14: Overview of Deep Learning Algorithm for Image
Stitching

A. Data Generation

To approach homography between images, we need data
that has some pre-defined known homography. This could be

hard to achieve given the large size of datasets used. Therefore,
the need to generate synthetic data becomes necessary. To
stitch, we will be using the MSCOCO dataset to generate data.
Data generation is done in the following ways:

• We need to generate synthetic image patches and their
corresponding perturbed versions along with homography
information. For that, first, we will take the input image
A and define corner coordinates of Patch A that randomly
describes an area in image A.

• The next step is to perform perturbation of Patch A to
form Patch B such that it fits within a predefined pixel-
shift range. In other words, we need to make sure that
the perturbation does not exceed a certain range.

• Once we have Patch A and Patch B corner coordinates,
we can compute inverse homography between them.

• We then proceed to warp image A with the corresponding
inverse homography matrix, to generate image B.

• The final step is to extract image patches from image
A and image B and calculate H4pt as a difference
between the perturbed corner coordinates of Patch B and
coordinates of Patch A

We will further use H4pt. (corner coordinates differences)
as our labels to further train data to computer homography.

B. Supervised Appraoch

The supervised model consists of a total of eight
convolutional layers. After every second convolutional layer,
we define a MaxPooling layer. Towards the end, the final
eight linear outputs are obtained which are eight predicted
values of H4pt. The loss function can then be defined as the
difference between the predicted values and the ground truth
values of H4pt and is given by:

L2− Loss = ∥H4Pt − H̃4Pt∥22

The model architecture of the supervised model is shown in
the figure below. We have followed a similar architecture as
defined in the original paper with almost the same settings for
training.

Fig. 15: Overview of Supervised Learning Model

Our Supervised Model architecture is shown in Fig 15,16



Fig. 16: Enter Caption

TABLE I: Supervised Model

Performance Train Val Test

EPE 14.48 30.775 25.61
RMSE 3.81 3.13 5.06

We have trained the Supervised model for more than 7 hours
using 3.5 Lakh Training patches and 70k Validation Patches
with a batch size of 64 and a learning rate of 0.0001 with
SGD Optimizer. We have experimented with two variants of
almost the same loss function, one time using nn.MSELoss()
and the other training experiment using the square root of
the nn.MSELoss(). In both of the cases, the loss converged.
We also tried experimenting with normalizing both Image and
corner differences and also not normalizing them. The nature
of loss convergence is the same in both cases except the loss
range is different which is expected.

Model Inference Time - 1.78 s (Measured on RTX3080).
For the above training iteration, we have normalized the

Images by dividing with 255 and also the corner differences
H4Pt by 32. This to ensure the smoothness in the learning.

The testing of model on Train, Test and Val datasets has
been visualised as seen in the following figures.

C. Unsupervised Approach

The unsupervised model consists of the same Supervised
Net in addition to that two new blocks named as TensorDLT
and Spatial Transformer network are added. Here rather than
taking the loss of the corner coordinate difference we generate
a warped patch of PA using differentiable DLT and Spatial

Fig. 17: Supervised Loss Curve

Fig. 18: Supervised Output: Train Image

Fig. 19: Supervised Output: Val Image



Fig. 20: Supervised Output: Test Image

transformer methods. From this, we get the predicted patch B
PB .

The loss for this approach is defined as :

L1− Loss = ∥P̃B −PB∥

here Predicted patch is the warped patch A,

P̃B = w(PA)

In this, the primary concept is to use TensorDLT (Differen-
tiable Direct linear transform) and add a Spatial transformer
network (Differentiable Warping function).

Tensor DLT: Let X and X′ be the homogeneous co-
ordinates of corresponding points in the two images. The
relationship between them can be expressed as:x′

y′

w′

 = H

x
y
w


where H is the homography matrix. The DLT algorithm

aims to estimate H from a set of corresponding points.
Consider n corresponding points, and let Xi and X′

i be the
homogeneous coordinates of the i-th point in the two images.
The relationship for each point can be written as:x′

i

y′i
w′

i

 = H

xi

yi
wi


The DLT algorithm minimizes the reprojection error by

solving the linear system of equations. The solution to this
linear system provides the elements of the homography matrix
H.

Spatial Transformer: We tried to implement both of these
using two different methods one is using Kornia (A differen-
tiable Geometric Computer Vision library) and also writing the
two methods from scratch using [2] [6]. One of the sources
is the original Tensorflow implementation from the authors
and one is a custom pytorch-based one. With Kornia-based
implementation we got loss converged but the results were
bad on the validation set. In the Custom implementation, we
got the loss converged to some extent but the results were still
not good.

Our L1 Loss converged to 44.4 approx but the model was
overfitting and we felt something wrong with the training as
the results were not accurate. Then we tried training with the

method using the transformer from the original implementa-
tion. The flow of the unsupervised network is as follows:

Fig. 21: Unsupervised Loss

Fig. 22: UnSupervised Approach

We tried approaching the template matching but the results
were not good.

D. Other Approaches - We explored (D2Net, SuperGlue,
LOFTR)

Based on the experience, we found that even though the
current Supervised and Unsupervised methods work, they still
lack in adapting to scenarios very well and the input size we
have given to the image is too small to generalize and generate
good homography for various scenarios. Further reading on
this topic, and then we thought why not to implement ap-
proaches that can give good descriptors rather than learning
the corners differences or the homography? In this way, we
can leverage both traditional matching like RANSAC and the
deep learning features which are rich in terms of information.
One of the famous works we found out about is D2 Net. This
implements a framework for the Detection and description of
Local features. This combined with traditional matching with
threshold can give good results.

Then we researched more for networks with end-to-end
capabilities like networks that have a form of RANSAC
implemented internally, we found the works of detector-free
matching, and surprisingly enough we found that the same
authors who authored the Supervised Homography estimation
coauthored a new paper in 2019, which is Superglue. This
work leverages a neural network that takes two input images
as before and matches a set of local features by jointly



finding correspondences and rejecting non-matchable points.
This primarily leverages the concepts of Graph neural network
which is kind of one of the most used approaches in Geometric
computer vision. Further, this work is extended by a team
of researchers, and in this work they replaced the past work
with Transformers, especially leveraging the concept of multi-
head attention. The primary disadvantage of these approaches
is they need a lot of data to train. One of the primary
challenges we faced with the traditional approach with features
is scale and rotation. We have tested some of the results from
Superglue and the results are truly great. One of the results
is attached here. But even deep networks are quite prone to
rotational variance.

Fig. 23: SuperGlue Ouptut

IV. DISCUSSION AND CONCLUSION

This report presents both the Traditional and Deep learning-
based approaches for homography estimation. The above
pictures (Fig 18,19,20) show the results from supervised
implementation. Each of the pictures describes the Patch A
corners (Yellow), Patch B Corners (Green), and the predicted
Homography or the Corners (Green). Even though we tried
the Unsupervised approach and somehow the loss converged
the outputs are very bad which were not plotted in some of
the images. And further, the Unsupervised approach is a bit
harder to train as it depends on specific parameters and it is
more prone to getting stuck in local minima. The supervised
approach is easy to train and also the results are accurate.

One of the primary confusions we had is the difference in
the approaches listed in the Paper and the resource material
(course website) we have regarding training the Unsupervised
Network. Primarily regarding the difference between passing
Image A in the original paper and patch A in the resource
provided to the Spatial Transformer network to get Warp. This
is something we want to understand further.

V. FURTHER EXPLORATIONS

To explore further Deep learning techniques we have tried
to understand some of the approaches such as Superglue
which are explained above. We equally tried to understand
how to solve issues related to multiple issues such as
rotation, scale, and repetition of features and understood that
approaches such as BRIEF, SIFT, and ORB solve these issues.

In one of my previous works, we also explored LoFTR
which is one of the state-of-the-art approaches in Feature
learners for homography (End to End flow for getting feature
matches). This was recently integrated into Kornia and the
testing code we have placed in the submission.

REFERENCES

[1] DeTone, D., Malisiewicz, T. & Rabinovich, A. Deep Image Homography
Estimation. (2016)

[2] Nguyen, T., Chen, S., Shivakumar, S., Taylor, C. & Kumar, V. Unsu-
pervised Deep Homography: A Fast and Robust Homography Estimation
Model. (2018)

[3] Sarlin, P., DeTone, D., Malisiewicz, T. & Rabinovich, A. SuperGlue:
Learning Feature Matching with Graph Neural Networks. (2020)

[4] Sun, J., Shen, Z., Wang, Y., Bao, H. & Zhou, X. LoFTR: Detector-Free
Local Feature Matching with Transformers. (2021)

[5] Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A. &
Sattler, T. D2-Net: A Trainable CNN for Joint Detection and Description
of Local Features. (2019)

[6] Github- Unsupervised Implementation:
https://github.com/breadcake/unsupervisedDeepHomography-
pytorch/tree/main


