
RBE549 Project 1 - My AutoPano
Yaşar İdikut

yidikut@wpi.edu
Harshal Bhat
hbhat@wpi.edu

I. PHASE 1: TRADITIONAL APPROACH

In this project, we perform panorama stitching using the
traditional method. This method involves 6 major steps as
follows:

• Corner Detection
• Adaptive Non-maximal Suppression
• Feature Descriptor Generation
• Feature Matching
• Outlier Rejection using Radom Sampling Consen-

sus(RANSAC) and Robust Homography estimation
• Image Warping, stitching, and blending

A. Corner Detection

This section focuses on the Harris and shi-Tomashi corner
detection methods using open-cv functions. Firstly we con-
verted the images to grayscale we applied the Harris algorithm
using cv2.cornerHarris to determine the number of corners
meeting a certain threshold and visually represented them
overlaid on the original image.

Fig. 1 shows the result of Harris Corner detection on a set
of images.

Fig. 1. Harris Corner Detection

B. Adaptive Non-Maximal Suppression (ANMS)

Followed by the corner detection we implemented ANMS
for refining the obtained corners so that they are evenly spread
out through the image. Employing peak local maxima detec-
tion, the algorithm identifies strong corner candidates, and
their coordinates are then iteratively compared to determine
their suppression based on Euclidean distance. The process
results in a set of refined corner points, highlighted in the
image using red circles. Figure 3 showcases the effectiveness
of ANMS in selecting the 500 most salient corners while
discarding redundant ones.

Algorithm 1 Adaptive Non-Maximal Suppression
Require: Corner score Image (Cimg obtained using corner

metric), Nbest (Number of best corners needed)
Ensure: (xi, yi) for i = 1 : Nbest

1: Find all local maxima using Cimg

2: Find (x, y) coordinates of all local maxima
3: Initialize ri = ∞ for i = 1 : Nstrong

4: for i = 1 : Nstrong do
5: for j = 1 : Nstrong do
6: if Cimg[yj , xj ] > Cimg[yi, xi] then
7: ED = (xj − xi)

2 + (yj − yi)
2

8: end if
9: if ED < ri then

10: ri = ED
11: end if
12: end for
13: end for
14: Sort ri in descending order and pick top Nbest points. =0

Fig. 2. ANMS with 1000 Best Points

C. Feature Descriptors Generation

After the ANMS step, Nbest corners are obtained. The pro-
cess involves iterating through each corner, applying a custom
feature descriptor that manipulates small image patches of size
41x41. Techniques such as padding, Gaussian blurring, and
subsampling are employed to enhance feature representation.
The resulting features are normalized and organized into
arrays, along with their corresponding positions. This feature
extraction mechanism lays the groundwork for subsequent
stages in image analysis, aiding robust corner matching.

D. Feature Matching

We have obtained and saved the standardized Feature De-
scriptors for all images as 64x1 feature vectors. This step
includes capturing images (img1 and img2), feature vectors



Fig. 3. Image 1 and Image 2 Matched

(feat1 and feat2), and feature positions(feat pos1, feat pos2).
In addition, a threshold parameter is specified to eliminate poor
matches. For each feature in the first set, an exhaustive search
of the features in the second set is performed to determine
the best and second-best matches based on the sum of square
distances. Matches are retained if the best match distance to
second-best match distance ratio is less than the threshold.
Figure 3 shows the result after feature matching.

E. RANSAC for outlier rejection and robust Homography
estimation

We calculate Homography, which uses Singular Value De-
composition (SVD) to factor the matrix. A candidate homog-
raphy matrix is estimated using iterative random sampling
of four matches, and inliers are identified by transforming
the matched points. This process is repeated multiple times,
and the set of inliers with the highest count is deemed the
best estimate. The results, which were visualized using draw
matches, show that RANSAC is effective in improving the
accuracy of feature matching between images.

Algorithm 2 RANSAC
0: while iterations < Nmax and percentageofinliers <

90% do
1: Select four feature pairs (at random), pi from image 1, p′i

from image 2;
2: Compute homography H between the previously picked

point pairs;
3: Compute inliers where SSD(p′i, H · pi) < τ , where τ is

some user-chosen threshold and SSD is the sum of square
difference function;

4: Increment iterations;
4: end while

Repeat the last three steps until exhausted Nmax number
of iterations or found more than 90% inliers;
Keep the largest set of inliers;
Re-compute least-squares Ĥ estimate on all of the inliers.
=0

Fig. 4. Image 1 and Image 2 RANSAC Result

Fig. 5. Image Stitching and Blending

F. Image Stitching

The image stitching process starts with computing the
transformation of key points from the first image to align
with the second image using the Homography matrix which
was calculated in the previous step. The bounding box is
determined and a translation matrix is generated to move
the stitched to the positive quadrant. The 2 images are then
combined to give a stitched look.

G. Image Poisson Blending

The calculations for transformation and bounding boxes are
similar to those for stitching. A translation matrix is used to
align 1st and 2nd images, and a mask is created to isolate
the region from the first. The isolated region is combined
with the corresponding region in the stitched image, and
the cv2.seamlessClone function is used to achieve smooth
blending. Figure 5 shows a composite image that seamlessly
blends the contents of both images.



Fig. 6. Final Result of Panorama Stitching

Fig. 7. Panorama Stitching for Museum Set

H. Final Results from Train and Test Sets

I. Multiple Image Stitching

We developed horizontal image stitching for multiple-image
stitching, assuming that the images are ordered from left to
center; otherwise, we order them brute-force. We begin the
algorithm by determining the central image in the directory,
then begin panorama stitching from center to left by iterating
backward, and save the result as a copy in the left stored image.
When it has finished stitching all of the left images, we send
this left stored image to the right. We repeat the process of
stitching the appropriate image, and the majority of the images
are beautifully stitched and blended. This approach works well
for six images at most; after six, the perspective transform
distorts the result.

The case for checkboard blending is the noisy pixels of
the carpet take up all corners and due to abrupt changes in

Fig. 8. Custom Set 1 Blended Image

Fig. 9. Test Set 3 Blended Image



Fig. 10. Caption

pixel intensity for checkerboard the algorithm doesn’t blend
appropriately.

Fig. 11. Failure case of Test Set2 Checkboard RANSAC output

II. PHASE 2: DEEP LEARNING APPROACH

A. Data Generation

A patch generation algorithm was implemented to create
the test, validation, and testing dataset for both the supervised
and unsupervised models.

Algorithm 3 Patch Generation
1: Input: patch size, perturb max, pixel buffer
2: Output: Original and Transformed Patches
2: for each image in the dataset do
2: for each valid patch coordinate do

Step 1: Define the coordinates of a patch on the original
image
Step 2: Generate random perturbations for each corner of
the patch
Step 3: Create perturbed patch coordinates using the
original coordinates and perturbations
Step 4: Calculate the perspective transform (H) between
the original and perturbed coordinates
Step 5: Apply the inverse transform to the original image
to obtain the transformed image
Step 6: Extract patches from both the original and trans-
formed images

2: end for
2: end for=0

B. Supervised Approach

The architecture used for the supervised approach is VGG-
16 structure. The loss function is a simple MSELoss on
the model output. Aside from MSELoss, we also use the
MACE metric from the original paper. This metric is used in
evaluating and comparing the training for both models. After
the training is complete, a separate code calculates EPE loss
for all datasets (train, validation, and test).

We used the Adam optimizer with a learning rate of 0.0001.
Each training epoch evaluates and learns from 5000 training
patch pairs and reports loss on 1000 patch pair validation.
Batch size is 64. We trained both models for 100 epochs which
took 15 hours in total on an RTX3090 GPU. As can be seen
from the graphs, 100 epochs were more than enough to get
the model to converge.

L2loss =
∥∥∥H4points − H̃4points

∥∥∥
2

(1)

C. Unsupervised Approach

The model architecture for the Unsupervised model is kept
the same as the Supervised model. All the other hyperparam-
eters are also the same (100 epochs, 64 batch size, Adam
optimizer with 0.0001 learning rate). The only difference is
in the calculation of the loss function. In this model, since
the true perturbed corners are not evaluated, a loss function
based on photometric loss is used. Again, as can be seen from
the training and validation losses and accuracy measures, this
model converges.

L1loss =
∥∥∥P̃A − PB

∥∥∥ (2)



Supervised Model Unsupervised model
Train Val Test Train Val Test

EPE 30.535 54.943 55.466 33.308 52.057 52.541
Run time(ms) 26.4 26 25 27 28 28

TABLE I
MODEL PERFORMANCE COMPARISON

Fig. 12. Training Dataset: Mean Average Corner Error vs Epochs

Fig. 13. Training Dataset: Mean Squared Error (Loss) vs Epochs

D. Video output Results

In this section, we share the results of our deep learning
based image stitching algorithm. Overall, it didn’t perform
as well as the traditional one, probably due to low accuracy
estimation of homography.

E. Discussion and Conclusion

In this study, we conducted a comprehensive performance
evaluation of homography estimation methods. Figure 12
depicts a comparison between selected/perturbed patch (se-
lected in red, perturbed in green) and four-corner sets fCB
computed using supervised (blue), unsupervised (yellow), and

Fig. 14. Validation Dataset: Mean Average Corner Error vs Epochs

Fig. 15. Validation Dataset: Mean Squared Error (Loss) vs Epochs

feature-based traditional (light blue) methods. The supervised
method consistently provides the most accurate estimates,
whereas the feature-based approach is unstable depending
on the number of features and their matching status. The
unsupervised method, while more stable than the feature-based
approach, consistently produces estimates that are inferior to
the supervised method. Table I shows the average Endpoint
Error (EPE) and runtime results, demonstrating that the su-
pervised model outperforms the unsupervised model without
overfitting. Traditional methods perform well when features
are accurately identified. The unsupervised method shows
superior generalization and video stitching results indicate



Fig. 16. Mean Average Corner Error(Accuracy) vs Epochs

Fig. 17. Mean Squared Error(Loss) vs Epochs

potential improvements with a better-tuned model.

III. CONCLUSION

This project consisted of two phases. In phase 1, we used the
traditional approaches to detect features, match them, calculate
transformation between image frames using the homography
matrix and finally stitch/blend them. In phase 2, we used the
deep learning approaches to achieve similar results. Overall,
deep learning approach proved to be fast and more robust.

REFERENCES

[1] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Deep Image Homogra-
phy Estimation.” arXiv, 2016. doi: 10.48550/ARXIV.1606.03798. [2] T.
Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and V. Kumar,
“Unsupervised Deep Homography: A Fast and Robust Homography
Estimation Model.” arXiv, 2017. doi: 10.48550/ARXIV.1709.03966.

Fig. 18. Mean Average Corner Error(Accuracy) vs Epochs

Fig. 19. Mean Squared Error(Loss) vs Epochs

Fig. 20. Train Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison



Fig. 21. Classical Approach RANSAC output

Fig. 22. Test of Traditional, Supervised and Unsupervised approaches on
Homography estimation where Traditional approach is outperformed by Deep
Learning methods because the feature matched corners are not good

Fig. 23. Corresponding RANSAC output

Fig. 24. Test Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison

Fig. 25. Corresponding RANSAC output for Comparison



Fig. 26. Validation Set Image output of Traditional, Supervised and Unsu-
pervised approaches on Homography estimation comparison

Fig. 27. Corresponding RANSAC output for Comparison

Fig. 28. Supervised Model

Fig. 29. Tower Image Stitched

Fig. 30. Tower Image Blended

Fig. 31. Trees Image Stitched



Fig. 32. Trees Image Blended

Fig. 33. Unity Hall Building Stitched

Fig. 34. Unity Hall Blended


