
HW1 - MyAutoPano
Mihir Deshmukh

Robotics Engineering
Worcester Polytechnic Institute
Email: mpdeshmukh@wpi.edu

Ashwin Disa
Robotics Engineering

Worcester Polytechnic Institute
Email: amdisa@wpi.edu

Using 1 LATE day
Abstract—In this project assignment, the phase 1 of the project

involves stitching multiple images with 30 − 50% overlap to
generate a panorama using the classical approach. And in
phase 2 we implement deep learning approaches to estimate
the homography between two images, bassically combining the
classical methods like corner detection, ANMS, feature extraction
and matching, RANSAC and estimating homography into one.

I. PHASE 1: CLASSICAL APPROACH

The overview of the method followed is shown in fig. 1 and
a given test test consisting of 3 overlapping images is shown
in fig. 2.

Fig. 1. Overview of the method

Fig. 2. Input to the panorama stitching.

A. Corner Detection

We first detect corners of the input image using the
cv2.cornerHarris() function. Output is shown in fig. 3. The
output of the function is a matrix of same size as the image
with probability of a corner as each element. We also tried
the cv2.goodFeaturesToTrack() function which combines
the corner detection and ANMS (Adaptive Non-Maximal
Suppression) to output the Nbest corners in the image. The
output of this method is shown in fig. 4.

Fig. 3. Corners extracted using Harris corners method.

Fig. 4. Corners extracted using cv2.goodFeaturesToTrack() method.

B. ANMS

The objective of this step is to detect corners such that
they are equally distributed across the image in order to
avoid weird artifacts in warping. In a real image, a corner
is never perfectly sharp, so we choose the Nbest corners
which are true local minima. The output of the ANMS is
shown in fig. 5. The result is similar to what we got from
the cv2.goodFeaturesToTrack() function.

C. Feature Descriptor

Using the Nbest corners from the ANMS method, we
describe each feature point by a feature vector, this is like
encoding the information at each feature point by a vector.



Fig. 5. Output of ANMS method.

We take a patch of size 41×41 centered around the keypoint.
We blur the patch using the cv2.GaussianBlur() function.
Before that, we pad the image by half the size of the patch to
make sure the edge pixels are considered. The blurred patch is
resized to 8×8 and reshaped to a 64×1 vector. This vector is
standardized to have zero mean and variance as 1. This done
to reduce bias and to achieve some amount of illumination
invariance.

D. Feature matching

All Nbest keypoints of all images are encoded as a 64× 1
feature vector. Now, we match these feature vectors to stitch
the images. We pick a point in image 1 and compute the sum
of squared differences between all points in image 2, take
the ratio of best match(lowest difference) to the second best
match (second lowest) and if this is below a threshold (here
30), we keep the matched pair. We repeat this step for all
keypoints in image 1. We are left with only the confident
feature correspondences and these points will be used to
estimate the transformation between the 2 images, also called
as Homography. we use the function cv2.drawMatches() to
visualize the feature correspondences. This is shown in fig.
6 and fig. 7. If the algorithm is not able to detect enough
features between given two images, the image is skipped and
the next image is taken for comparison. This helps to make
the algorithm more robust, incase a different image is added
to the list of images for panorama.

Fig. 6. Feature matching between two images.

Fig. 7. Feature matching between stitched images and the third image.

E. RANSAC

As it can be seen from figures shown, not all features
matched are accurate. To remove the inaccuracies, we im-
plement a robust method called RANSAC (Random Sample
Concensus) to reject the outliers to generate the homography.
We extract 4 random feature pairs from both images and
compute the homography (transformation) based on these
random points. We compute the inliers by calculating the
sum of square differences and compare with a threshold (here
30), the ones lower are the inliers. We repeat these steps for
1000 times to maximise out chances of getting the accurate
inliers. Finally we estimate the homography using the inliers
which is used for stitching the images. The homography is
computed using the cv2.findHomography() function. The
accurate matches or inliers are shown in fig. 8 and fig. 9. The
lines joining two matching features are parallel to each other
tell us that the feature matching is accurate and necessary to
estimate the homography precisely.

Fig. 8. Feature matching between two images after RANSAC.

F. Stitching

Using the estimated homography from the previous sec-
tion, we warp the image2 onto the image 1 using the
cv2.warpPerspective() to obtain the required stitched image.
The final results are shown in fig. 10 and a stitched image from
the test set are shown in 11 and 12. The test set 4 is given with
2 images that do not belong to the panorama, the algorithm is
able to successfully reject these outliers and return the correct
output.



Fig. 9. Feature matching between stitched images and the third image after
RANSAC.

Fig. 10. Panorama of 3 stitched image.

II. PHASE 2: DEEP LEARNING APPROACH

A. Data Generation:

For training our model, we generate a dataset using a
subset of the MSCOCO dataset(5000) images. We generate
a synthetic dataset using these images. For this, we first resize
all the images to 480*480. Now, utilizing the resized images,
we decide on a region of interest, as mentioned in the problem,
which is the central part of the image, excluding the 160-pixel
margin on each side. Next we generate a random point in
the ROI and extract a 128*128 patch. We generate random
perturbation, which is between [-24,24], and add this to the
four corner pixel coordinates to get the perturbed corners.
Using this set of corners, we compute homography. The
inverse homography is used to warp the image, and we extract
the patch from the original patch coordinates to get the warped
patch, as mentioned in the problem statement. We save the
original patch, the warped patch, the perturbed corners, and
the original corner coordinates.

Fig. 11. Panorama of the test set2.

Fig. 12. Panorama of the test set3.

B. Supervised approach:

We employ the same model architecture as described in the
HomographyNet paper. This consists of 8 convolution layers
followed by Batch Norm and activation function(ReLU in this
case). As seen in Figure 13, we employ two conv layers at
each resolution halved after every two layers using a max pool
operation [128*128, 128*128, 64*64, 64*64, 32*32, 32*32,
16*16, 16*16]. The number of channel dimensions/feature
maps doubles at every other resolution drop, which is [64,
64, 64, 64, 128, 128, 128, 128]. The 16*16*128 feature map
is then given to a fully connected layer, bringing these features
down to 1024. Finally, the last layer brings these down to 8,
our model output. It is to be noted here that we solve this as a
regression problem, unlike as shown in Figure 13. Figure 15
details the model architecture.



Fig. 13. Supervised Model architecture

Fig. 14. Train and Validation Loss for Supervised model.

We train the model using the MSE loss function. The Adam
optimizer is used with a learning rate of 0.0025 and a weight
decay 0.0001. The model was trained on 30 epochs. We
observe overfitting after about 20 epochs, as seen in the vali-
dation loss plot in Figure 14. We achieved a validation loss of
42.4464225769043 and a training loss of 37.63188280936999
for the best model at 20 epochs.

Now, to get the EPE, as we are using MSE loss, we need to
take the square root for calculating the EPE. Following are the
EPE scores on train, val and test for the supervised network.
Train EPE: 6.313
Val EPE: 6.515

The result of the supervised homography model gives pretty
close results, as seen from the results in Figure 16 and Figure
17 in the test set. Which reinforces the belief that the model
has been trained properly and converged.

C. Unsupervised approach:

The unsupervised approach consists of three main com-
ponents Figure 18: the homography model, tensor DLT, and
the spatial transformer. As mentioned in the paper, we im-
plemented the tensor DLT, which gives us the homography
matrix in a differentiable manner. Also, the spatial network
was implemented using Kornia to warp the image and calculate

Fig. 15. Detailed Supervised Model architecture



Fig. 16. Supervised Result (Image 26): Green ground truth, Blue prediction

Fig. 17. Supervised Result (Image 31): Green ground truth, Blue prediction

the photometric loss function, which is the L1 loss function.
Figure 19 showcases the model components, though it is to be
noted that the spatial transformer is not visible in the summary
as it was implemented using Kornia in the forward pass and
hence doesn’t show up in the summary.

We train the model using the L1 loss (photometric loss)
function. The Adam optimizer is used with a learning rate of
0.0025 and a weight decay 0.0001. The model was trained
on 15 epochs. In our case, the loss wasn’t decreasing and
was stuck at a constant around 0.43595412373542786, as
seen in the validation loss plot in Figure 20. We achieved a
validation loss of 0.43595412373542786 and a training loss of
0.43378835481504474. Since the model didn’t converge, the
results are not up to par with the supervised network, as seen
in Figure 21 and Figure 22. We use the Full image instead of
the patch in the spatial transformer layer as mentioned in the

Fig. 18. UnSupervised Model architecture

Fig. 19. Detail UnSupervised Model architecture

Fig. 20. UnSupervised Train and Validation Loss

paper.
Since the model didn’t converge, we didn’t calculate the

EPE for the supervised model. But to calculate the EPE for
the unsupervised approach, we would need to take the H4Pt
from the Homography model, add it to the original corners,
and calculate it against the ground truth we saved during data
generation.

The images in the Phase 2 Pano set are very close to each
other in FOV because the model was trained on the same
warped patches; hence, if there is a drastic change in two
consecutive images, the homography won’t be accurate.

We also tried to stitch the Phase2 pano images using the
tomography from the supervised model. First, we resized the
image to 128*128, which is the model input size. We com-
puted the homography but had trouble scaling the homography
matrix for stitching. The output size kept exploding. Figure



Fig. 21. UnSupervised Result (Image 26): Green ground truth, Blue prediction

Fig. 22. UnSupervised Result (Image 31): Green ground truth, Blue prediction

23 shows an example for the image stitched with supervised
homography.

III. CONCLUSION

The classical approach works well and was successfully
implemented, which has a robust pipeline to reject images
with low feature matches. The supervised model was trained
successfully and converged in 20 epochs. The model output
was also pretty accurate, but we need to fix the scaling of
the homography matrix due to resizing to stitch the panora-
mas properly. The unsupervised model loss wasn’t reduced,
implying issues with the model itself. We tried various hyper-
parameters as well as optimizers, but we weren’t able to train
them properly.

Fig. 23. Supervised stitching failure


