
RBE/CS 549 Computer Vision
Project 1: My-Auto-Pano

Puneet Shetty
MS in Robotics

Worcester Polytechnic Institute
Email: ppshetty@wpi.edu

Edwin Clement
MS in Robotics

Worcester Polytechnic Institute
Email: eclement@wpi.edu

Abstract—A number of researchers have found that the
discipline of computer vision makes for an exciting area of
study.The problem of stitching photos together to make a
panorama is well-known in this discipline, and it can be
tackled using a variety of image processing algorithms.The
paper discusses the technique of stitching photos together
to make a panorama using both classical and deep learning
approaches.The traditional approach focuses on extracting and
matching common features in photos, as well as blending them
together based on these elements.The report briefly highlights
our solutions for Project 1. The report is organized into
two sections. The first section looks at the usual method for
finding a homography matrix between two sets of photos. The
second section details the implementation of both supervised
and unsupervised deep learning approaches for estimating
homography between synthetically created data.

Index Terms— MyAutoPano, Adaptive Non Maximal Sup-
pression, Corner Detection, Random Sampling and Consensus,
Homography, Panorama stitching, Image Stitching.

I. PHASE 1: TRADITIONAL APPROACH

In this section of the research, we investigate the traditional
ways for creating a panoroma by stitching image sequences.
Each subsection describes in detail the approach used and
the results of the photos. Feature-Based Methods are used to
extract features that appear in common sections of photos. We
match these feature keypoints and estimate the Homography
between the two images. We may utilize this Homography to
warp the second image relative to the first, which will then be
used to stitch the images together with the reference image.
To address issues with illumination or unexpected artifact
creation during picture stitching, we use blending algorithms
to flawlessly mix the images. To summarize, this project will
include the following activities:

1) Detect corners using Harris corner detection as feature
keypoints.

2) Adaptive Non-Maximal Suppression employing Sqaure
Distance to reduce artifacts during warping and optimize
Harris corner identification.

3) The Feature Descriptor standardizes keypoints and neigh-
boring pixels and applies Gaussian blur to produce illlu-
mination invariance at a specific level.

4) Feature matching identifies feature connection between
two images by calculating the distance between the first
and second best matches (lowest).

Fig. 1. Proposed Method

Fig. 2. Sample Inputs

5) RANSAC sets a threshold to ignore outliers and computes
a homography matrix for each images.

6) Homography allows us to translate one image to the
perspective of another, resulting in a stitched image that
overlaps common sections.

7) Finally, we mix overlapping photos to prevent illumina-
tion inconsistency after stitching.

We’ll be working our way through each of the previously
listed steps.

A. Corner Detection

The goal is to build a relationship between photos using a
set of features. Corners are the ideal method to do this because
they are visible from multiple angles. We can detect as many
corners as feasible from the given image and compare the
attributes between them. This comparison would indicate how
the photographs are geometrically related to one another. For
this, we can use two methods:

i Harris Corner Detection: The OpenCV library’s
cv2.cornerHarris function employs the Harris method to
detect corners. This method returns the corner strength



(a) Corners of Image 1 (b) Corners of Image 2

(c) Corners of Image 3

Fig. 3. Set 1

for each pixel, which is needed for adaptive non-maximal
suppression, as mentioned in the later section.

ii Shi-Tomashi Corners Detection: The OpenCV library’s
cv2.goodFeaturesToTrack function employs the Shi-
Tomashi method with a non-maximal suppression strat-
egy to detect uniform corner points. Thus, the function
returns corner co-ordinates rather than corner strengths.
As a result, we were unable to apply the output from
cv2.goodFeaturesToTrack to the adaptive non-maximal
suppression outlined in the later section.

B. Adaptive Non Maximal Suppression

Now that we’ve recognized corners in each image, we need
to determine the ”best” corners. The best corners are ones
that stand out from their local peer corners. Furthermore, we
want these corners to be evenly distributed around the image
so that we can achieve superior homographies. To do this, we
use Adaptive Non Maximal Suppression (ANMS), which has
two elements.

i Consider local maxima over corners.
ii Only examine corners with a greater distance from

stronger corners.
The second point is the key component of the ANMS, which
provides uniformly distributed corners from a collection of
”clusters”. The problem with Harris corners and other corner
detectors is that they detect a cluster of corners rather than a
single corner. This makes sense because a corner is a collection
of pixels, and depending on the image’s quality, many pixels
can be appropriately classified as corners. Even if we create
local maxima in the image, the cluster may still exist. To avoid
this issue, ANMS selects a point that is maximally away from
the other stronger corners, and when we sort the Nbest corners,
we will be able to obtain a point from the cluster.

C. Feature Descriptor

To match features and identify common characteristics in
photos, we must first generate feature vectors that encode all of
the feature’s information.To build the feature descriptor, we cut

Fig. 4. ANMS Algorithm

(a) ANMS of Image 1 (b) ANMS of Image 2

(c) ANMS of Image 3

Fig. 5. Set 1

out a 40x40 patch surrounding each key point.We then resized
the patch to 8x8 and used Gaussian blur on it.The resulting
8x8 patch was transformed to a 64x1 vector by removing
bias and illumination, which are feature vectors that store
information about the key point.The graphic depicts the feature
vectors for the main points. The key conclusion from the
feature descriptor process is the need of standardisation. If we
had eliminated the standardization and performed the feature
matching mentioned in the next phase, the unnormalized patch
would have not fit well with the feature descriptors from the
other photos. The explanation is because there are disparities
in contrast and intensity. The standardization makes the patch
insensitive to these intensity discrepancies, making it more
”comparable”.

D. Feature Matching

Feature matching uses the sum of square distance to deter-
mine the feature correlation between two photos. To find the
best matches, we calculate the ratio of the lowest first to lowest
second and compare it to the threshold. The threshold can be
adjusted depending on the feature mapping’s acceptance level.



(a) Features of Image 1 (b) Features of Image 2

(c) Features of Image 3

Fig. 6. Set 1

Now that we have a feature descriptor for each corner point,
we can determine which points match between two photos.
For each corner point in image 1, we calculated the sum of
the square differences between all points in image 2. The best
match was identified as the point with the shortest distance,
followed by the second best match with the second shortest
distance. If the ratio of the lowest distance to the second lowest
distance is less than a certain number, we accept the matched
pair; otherwise, we reject it.

E. Random Sampling and Consensus

We are aware that some of the matches we obtain—referred
to as outliers—are not significant. Stitching issues will arise
if these outliers aren’t eliminated. The Homography matrix
is also computed when outliers are removed. The process of
transforming two images is called homography. In two di-
mensions, homography comprises translational and rotational
components. Consequently, the homography matrix of the
inliers for both match pairs is eventually found. Until we
have high-quality inliers from the match pairs, we continue
iterating.

i Outliers Rejection: To calculate the predicted match with
the goal match and threshold the outliers, we first com-
pute the Homography matrix and multiply its inverse with
the picture to obtain the second image reference to the
first image.

ii Compute Homography: After initially rejecting the in-
liners based on a threshold, we compute Homography
on the inliners once again. Using image 1, we pass this
homography matrix to obtain the warp perspective.

(a) Matches between image 1 and 2

(b) Matches between image 2 and 3

(c) Matches between image 1 and 3

Fig. 7. Set 1

(a) RANSAC Matches between image 1 and 2

(b) RANSAC Matches between image 2 and 3

(c) RANSAC Matches between image 1 and 3

Fig. 8. Set 1



Fig. 9. Blended Image of Set1

Fig. 10. Graph of blend

F. Warping & Blending

In warping, we simply multiply the inverse of the homog-
raphy matrix by image 2 to compute the warp perspective
with respect to image 1. By determining the xmin, xmax,
and ymin, ymax of the freshly created image, we can create
the container. The freshly created image will be kept in the
container. Here, we did not do any blending as using alpha
blending interfered with the corner detection. This caused
issues where we needed to stitch multiple photos as corners
where not detected correctly.

G. Future Scope

Currently, we are finding and applying warping successively
which needs multiple passes over the warped images. After
every warp, the image features are distorted more and more.
A solution to this is calculating the homographies across every
pair like now, but also store the relative homographies. We can

Fig. 11. Blended Image of Set2

Fig. 12. Blended Image of Set3

then use Matrix multiplication to calculate the transformation
from the tree centroid of graph to every other image. This
would mean that each image will only undergo one warp
which will result in minimal warping, hypothetically. Another
improvement would be the use of Laplacian Pyramids to blend
the images together as well as matching luminosity across
images.

H. Final Analysis

This section’s panorama was created using a conventional
method that matched the photos’ shared features. The first and
most crucial step in any panoramic stitching scene is feature
detection. Better features like SIFT, FAST, and ORB that
offset problems with illumination, rotation, and scale may have
been utilized. When combined with ANMS, our Harris Corner
detector produced good results. Second, we think RANSAC
is more effective because it requires manual adjustment of a
large number of parameters. Certain parameter combinations
function with one but not with the others. Additionally, the
blending was not as flawless as we had hoped. There are
numerous excellent third-party blending features with superior
outcomes, such as particle blending.



Fig. 13. Blended Test Set1

Fig. 14. Graph of blend links for Set1

Fig. 15. Blended Test Set2

Fig. 16. Graph of blend links for Set2

If there are sufficient common traits among the photographs,
this method works well; if not, we must remove the image
from the panorama.We had to include translation in addition
to homography when the homography matrix turned out to
be negative in certain instances in order to preserve the
pixels.We attempted splitting the photographs into two halves
and applying blending and stitching to them because the
stitching breaks down in a cyclic fashion when there are
more than four images. However, we found that if there are
a lot of photos to stitch together, it also becomes problematic
because the resulting stitched image gets quite enormous,
consuming a lot of processing power and time to create
the panoramic. Additionally, we discovered that in order to
eliminate the outliers, we had to adjust the RANSAC settings,
such as the threshold value and number of iterations. However,



Fig. 17. Blended Test Set3

Fig. 18. Graph of blend links for Set3

occasionally, this process resulted in very few inliers; we need
to resolve this problem so that the algorithm would function
consistently across all photos without requiring modification.

II. PHASE 2: DEEP LEARNING APPROACH

In this section, we go over how the homography and
stitching of the photos are affected by the latest deep learning
algorithms. A reconstructed version of homography is made
by the deep learning model. The primary benefit of this
strategy is that, provided the basic network can be generably
generated, the algorithm can be strengthened. CNN is used for
both supervised and unsupervised training in order to estimate
the homography between picture pairings. After learning the

Fig. 19. Blended Test Set4

Fig. 20. Graph of blend links for Set4

patches’ corners, this model attempts to predict the warp of
the same patch that is perturbed as the label set. This method
is known as four-point parameterization.

A. Data Generation

The synthetic data utilized in the unsupervised and unsu-
pervised techniques was created using the 5000 photos in the
MSCOCO dataset. Each image has an active region defined,
as per the problem statement. This is the area that we have
selected to be the center of the image, with the exception
of 100 pixels on each of the four sides. Next, a 128x128
patch was selected inside the active zone, we call it PA. We
selected perturbations for each of the patch’s four corners



within the interval [-32, 32]. The homography was computed
using the original corners and the perturbed corners. After
warping the original image using inverse homography, a patch
was cropped from the distorted image at the same spot as the
original image’s corners, we call it PB . In this manner, we
collect several pairs of data from a single image based on the
original image size. In this approach, we have approximately
50000 image pairs from the initial 5000 (10 patches from each
image). With the corner correspondences, we also produce the
4 point homography H4pt between PA and PB , which is given
by the equation:

H4pt = CA − CB (1)

where CA represents the corners of patch A and CB the
corners of patch B.

Our deep networks’ input is made up of the patch-pairs
PA and PB , which have been transformed to grayscale,
single-channel images and stacked together. The labels for the
supervised approach are assumed to be H4pt. For the complete
set of image data, this procedure is repeated.

B. Supervised Model

Since this model has patches A and B, we may compute
the ground truth, or H4pt matrix. We calculate the L2 loss by
comparing this to the anticipated H4pt matrix. This network
design is an adaptation of the VGGNet framework.

I. Architecture: This network is architecturally comparable
to Oxford’s VGG Net, using 3x3 convolutional blocks
with Batch-Normalization and ReLU activations. The
network consists of eight convolutional layers, with a max
pooling layer that occurs after every two convolutions,
with pool size = 2 × 2 and stride = 2. Each of the
next four convolutional layers uses 128 filters, while
the first four use 64 filters each. Two fully-connected
Dense layers come after these convolutional layers. To
prevent overfitting, dropout with a probability of 0.5 is
performed after the first fully-connected layer and the
final convolutional layer. There are 1024 units in the first
Dense layer and 8 units in the final Dense layer.

II. Training Parameters: We trained our model for 16
epochs, with a batch size of 64, using the Adam optimizer
with a learning rate of 1e−3. As recommended by the
official implementation, we compute the L2 Loss for our
training performance metric.

L2loss = ∥ ˜H4Pt −H4Pt∥2 (2)

C. Unsupervised Model

The Tensor-DLT approach was implemented in the super-
vised model, as recommended in the work ”Unsupervised
Deep Homography: A Fast and Robust Homography Estima-
tion Model,” because the supervised model is more biased
and so has more room for development. This produces a
homogeneous matrix from the expected H4pt. Additionally, a

Fig. 21. Homography Net Architecture

Fig. 22. Supervised Validation Loss vs Epochs

spatial transformation layer is used to compute patch B from
the given data after which the L1 loss, or photometric loss is
calculated between the data generated patch B and the output.
In order to optimize the weights, we backpropagate the loss.
Unlike the supervised model, this one is not biased.

I. Architecture: The architecture of the Unsupervised
model consists of three parts:

a) Homography Net: This section of our network com-
prises of the network we constructed for our super-
vised network, which has two dense layers, three
max pooling layers, eight convolution layers, and their
corresponding batch normalization and RELU layers.

b) Tensor Direct Linear Transform: To compute a dif-
ferentiable mapping from the 4-point parameterization
H4pt to H, the 3×3 parameterization of homography,
we create a Tensor Direct Linear Transform layer. This
layer remains differentiable to enable backpropagation
during training, basically applying the DLT algorithm
to tensors. The respective corners from the original
patch CA and the 4-point parameterization H4pt are
the inputs of this function and the output is an estimate
of the 3×3 homography parameterization H.



Fig. 23. Unupervised Validation Loss vs Epochs

c) Spatial Transformer Network: To obtain warped patch,
the subsequent layer applies the 3 × 3 homography
estimate H, which is produced by the Tensor DLT, to
the pixel coordinates of patch A. In order to train our
neural network, these warped coordinates are required
in order to compute the photometric loss function. This
layer has to be differentiable in addition to warping
the coordinates in order for backpropagation to allow
the erroneous gradients to pass through. Thus, we
use the Spatial Transformer Layer to homography
transformations.

II. Training Parameters: We employed a training configu-
ration similar to the supervised model, utilizing the Adam
optimizer, learning at a rate of 1e−3 for 100 epochs,
with a batch size of 64 and employing photometric
loss function to track the unsupervised model’s training
efficacy.

Lossphotometric = ∥warp(IA,H4pt) · IB∥1 (3)

D. Conclusion

In conclusion, our implementation employs two distinct
networks: one operates in a supervised manner, yielding a
promising EPE (End Point Error) loss of 4.23, while the other
employs an unsupervised approach with a slightly higher EPE
loss of 11.56. The supervised model excels with labeled train-
ing data, showcasing accurate correspondence estimation and
leading to a more precise panorama reconstruction. In contrast,
the unsupervised model relies on self-imposed constraints and
learned representations, presenting a valuable alternative when
labeled data is scarce.

Model EPE loss

Supervised Model 4.23
Unsupervised Model 11.56

TABLE I
COMPARISON OF EPE LOSS BETWEEN DIFFERENT MODELS

(a) Test Set 1

(b) Test Set 2

(c) Test Set 3

Fig. 26. Warped Test Sets from our Network

Despite performance differences, both models contribute
to panorama generation understanding. The supervised model
shines in scenarios with abundant labeled data, while the
unsupervised model highlights the potential of learning from
unannotated data. This duality allows flexibility in adapting the
approach to real-world scenarios, shedding light on the trade-
offs between supervision and unsupervision in panoramic
image synthesis. Further research and experimentation could
refine these models, potentially bridging the performance gap
and enhancing the robustness of panoramic image generation
systems.



Fig. 24. Unsupervised Network Architecture

Fig. 25. Unsupervised Network Model


