
RBE/CS 549 - P1: MyAutoPano
Using 2 Late Days

Blake Bruell
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

babruell@wpi.edu

Cole Parks
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

cparks@wpi.edu

Abstract—In this paper we discuss the implementation of
a tradition panorama stitching pipeline along with two deep
learning approaches. We begin in Phase 1 by describing robust
corner detection, feature matching, and image blending to achieve
a stitched panorama, and in Phase 2 we outline supervised
and unsupervised deep learning approaches to estimate the
homography between perturbed image patches.

I. INTRODUCTION

This paper is split into two sections: the traditional ap-
proach, and the deep learning approach. Each section details
the technical aspects of the approach, as well as the issues
our team ran across and our teams solutions. Some results are
presented in each section, but more extensive results can be
found in the Appendix.

II. PHASE 1: TRADITIONAL APPROACH

In this section, we detail our implementation of the clas-
sic panorama stitching algorithm. First, corner detection is
performed on the input images. Then, adaptive non-maximal
suppression (ANMS) is used to select the best corners. Next,
feature descriptors are computed for each corner. Then, feature
matching is performed to find the best matches between the
two images. Finally, RANSAC is used to remove outliers
and estimate the homography between the two images. The
homography is then used to warp the images and blend them
together to create the final panorama. We also discuss methods
for blending the images together to create a cleaner final
panorama.

Fig. 1: Traditional Approach to Panorama Stitching

A. Corner Detection

To start the panorama stitching process, we first need to
detect corners in the input images. In our implementation,
the Harris corner detector is used to find corners in the

(a) Input image for Harris
corner detector.

(b) Corner-score image from
Harris corner detector.

Fig. 2: Corner Detection

images. Input images were converted to grayscale, and then the
cv2.cornerHarris function was used to find corners in
the image. The input and output of the Harris corner detector
is shown in Figure 2b.

B. Adaptive Non-Maximal Supression (ANMS)

Once a corner-score image was generated, adaptive non-
maximal supression (ANMS) was used to select the best cor-
ners. The ANMS algorithm takes in a corner-score image and

(a) Corner Peaks
(N=5000, MinDist=3)

(b) Output (N=500)

Fig. 3: Adaptive Non-Maximal Suppression (ANMS)



(a) Patch (b) Blurred

(c) Subsampled (d) Grayscale (e) Normalized

Fig. 4: Example Feature Descriptor Pipeline

outputs a list of the best corners. It first finds the local maxima
in the corner-score image, shown in Figure 3a, which was
performed with skimage.feature.peak_local_max.
Then, for each local maxima, the distance to the nearest local
maxima with a higher score was computed. The local maxima
with the largest distance to a higher-scoring local maxima were
added to the list of best corners. This ensured that the corners
chosen are evenly-distributed across the image which in the
end results in a more robust homography. The output of the
ANMS algorithm is shown in Figure 3b.

C. Feature Descriptors

Once the best corners were selected, feature descriptors
were computed for each corner. In our implementation, the
feature descriptor is a 64x1 vector. To compute the feature
descriptor, a 41x41 patch was taken around each corner. The
patch was then blurred using a Gaussian blur with a kernel
size of 5 and a standard deviation of 1. The blurred patch was
then downsampled to 8x8, grayscaled, normalized, and finally
reshaped into a 64x1 vector. An example of what the feature
descriptor pipeline looks like for a patch around a specific
corner is shown in Figure 4.

D. Feature Matching

Once feature descriptors were computed for each corner,
feature matching was performed to find the best matches
between the two images. A basic brute force matcher was
implemented to achieve this task.

1) Brute Force Matcher: For each feature descriptor in
the first image, the sum of squared differences (SSD) was
computed between that descriptor and each descriptor in the
second image. The best match is the descriptor in the second
image with the lowest SSD, and the second best match is the
descriptor in the second image with the second lowest SSD.
If the ratio of the best match to the second best match was
less than some threshold, the match was kept. This ensured
that only the most unique matches were kept. A default of 0.7

Fig. 5: Feature Matching Output (threshold=0.7)

(a) Without many-to-one
filtering

(b) With many-to-one filtering
(N=3)

Fig. 6: Many-to-One Filtering Example on Difficult Checker-
board Pattern

was used for the threshold. The output of the feature matching
algorithm is shown in Figure 5.

2) Many-to-One Feature Rejection: Sadly, this matching
technique can fail catastrophically for certain inputs, and lead
to what we will refer to as a many-to-one features. A many-
to-one feature set is composed of a many features on a
source image all forming matches with a single feature in the
destination image. An example of a image with such features
can be seen in Figure 6a. These sets are problematic as a
trivial homography can lead to a many inliers when performing
RANSAC, and so it is desirable to remove these anomalies.
This was accomplished by removing all matches which are
part of a many-to-one set above some threshold of N matches.
The output of this filtering can be seen in Figure 6b.

E. RANSAC (Outlier Rejection and Robust Homography)

After naive feature matching, RANSAC was used to remove
outliers and estimate the homography between the two images.
The RANSAC algorithm takes in a list of matches, which
correspond a keypoint from image 1 to a keypoint from
image 2, and determines a homography which results in the
maximal number of matches being included. It accomplishes
this statistically, by randomly selecting four matches and
computing the homography between the 4 keypoints from
image 1 and image 2. Then, the keypoints in image 1 for each
match are transformed using the homography, and the SSD is



Fig. 7: RANSAC Output

calculated for each match, between the transformed keypoint
from image 1 and keypoint from image 2. RANSAC considers
all matches which have an SSD below some threshold as
inliers. Intuitively, a homography with many inliers is a
homography which accurately aligns many matches.

This process is repeated until the number of iterations
exceeds a maximum number of iterations (in our case 2000)
or until the number of inliers exceeds a minimum number of
inliers. The homography with the most inliers is then returned.
The output of the RANSAC algorithm is shown in Figure 7.
Compared to Figure 5, the matches in the RANSAC output
are much more accurate and there are no outliers.

F. Stitching and Blending Images

All of the steps leading up to this one are simply to find
good homographies between image pairs. This is not sufficient
for the production of a panorama, as the images must then
be combined according to the calculated homographies. This
process is actually quite involved, and easily as complicated as
all the previous steps combined in implementation. As such,
the process will be broken down into a few different sections.

1) Image Order and Outlier Images: The first aspect of
the technique we will discuss is how outlier images and out
of order images are dealt with. Before going any further, let
us define what we mean by ”in order” or ”out of order”
images. We define a of set of images as in order if they
are presented in the order they should be stitched, and out of
order if otherwise. Image sets can also contain images which
do not belong in the panorama at all, regardless of how they
are ordered. These images are henceforth referred to as outlier
images. To address outlier images and out of order image sets
our team implemented two techniques: image skipping, and a
minimal path algorithm.

The first technique, image skipping, assumes that images are
presented in order, but potentially with outlier images. The
idea of the technique is simple: if an image doesn’t have a
sufficiently good homography with the previous image in the
image set, it is skipped entirely. This yields good results on
in order image sets with arbitrary outlier images. This doesn’t

(a) Rectilinear Projection

(b) Cylindrical Projection

Fig. 8: Results of Different Image Projections [1]

deal with the case of out of order images, though. To deal
with this case, the second technique must be used.

In the second technique, we construct a directed graph in
which each vertex is an image, and each edge is a homography
between those images. To create this graph the homography
calculation is performed on every pair of distinct images, in
both directions, (which can get very expensive for large image
sets). The directed edge weight between one vertex, image1,
and another vertex, image2, is defined as the number of inliers
yielded by RANSAC from image1 to image2 (note the order
is important). If RANSAC does not converge, the edge weight
is set to negative infinity. The maximal path is then calculated
through this graph, which is defined as the path through the
graph which contains any given vertex at most once (though
it need not contain all vertices in the original graph) with
the greatest sum of edge weights. This algorithm will never
include create a path which cannot be stitched together, as all
edges between images without good homographies have an
infinitely negative cost, and will thus never be included. Due
to the cost of this method, it must be enabled via an argument.

2) Cylindrical Warping: Thus far the assumption has been
that the image sets presented need only a set homographies to
correctly stitch them together. This is nominally true, but due
to the rectilinear projection used by cameras stitching many
images which cover a large FOV will result in undesirable
behavior. This behaviour can be clearly demonstrated in Figure
8a, which demonstrates how without some form of projection
correction, the images on edges of the panorama must be
increasingly warped. This warp is not caused by some failure
of the pipeline, but directly as a result of the rectilinear
projection of images. This eventually causes highly distorted
images, and in the worst case, will cause the program to abort
due to overly large memory requirements. To correct for this
we must use some other projection method.

The most common method for panoramas is cylindrical
projection, as very often a panorama covers a large horizontal



Fig. 9: Train Set 3 With Cylindical Warping (start=1, cylin-
drical=750)

field of view, but comparatively narrow vertical field of view.
The result of a cylindrical projection can be seen in Figure
8b. You may notice this is projection is a trade-off, since it
does not preserve horizontal lines (but it does preserve vertical
lines).

The warping is implemented as an image preprocessing
step, as opposed to a post processing step, as otherwise the
increased distortion will still cause memory usage issues. Since
cylindrical projection is not always desirable (images must be
aligned vertically, images must be rotated, panorama doesn’t
cover a large horizontal FOV, etc.), it is disabled by default,
and must be enabled by providing the focal length of the
images as a parameter. An example of cylindrical warping
can be seen in Figure 9.

3) Stitching: Once an ordered list of images and the homo-
graphies between them is determined, the images are warped
and blended together to create the final panorama. To warp
the images, the left and right halves of the panorama were
warped and blended independently, and then the two halves
were combined to create the final panorama. The left set of
images was recursively created by combining the right image
with the warped left image, and then combining the next left
with the partial panorama just created, until the entire left half
of the panorama was created, as shown in Figure 10a. The
right set was created in the same way, and then combined to
create the final panorama.

4) Blending: To blend the images multiple techniques were
explored, including mean value blending, maximum blend-
ing, and Poisson blending. We settled on Poisson blend-
ing as the default as it yielded the nicest blending for
the image sets. The Poisson blending was performed using
cv2.seamlessClone, using a the overlayed image as the
source, and the result of maximum blending as the destination.
This worked well at reducing seams, but did not correct
exposure difference between images.

5) Results: The final panorama on Training Set 3 (minus
the first image, due to the warping induced memory constraints
discussed earlier) is shown in Figure 10c. The results from the
rest of the training sets, custom sets, and test sets are shown
in Appendix A.

(a) Left Stitch (b) Right stitch

(c) Final Panorama Output

Fig. 10: Image Stitching Pipeline for Training Set 3



III. PHASE 2: DEEP LEARNING APPROACH

In this section, we detail our implementation of the deep
learning approach to panorama stitching. We first discuss
the data generation process, then we outline the supervised
and unsupervised approaches to estimating the homography
between perturbed image patches. Finally, we discuss the
results of the deep learning approaches.

A. Data Generation

In order to generate data for the models to train on, we first
need a pair of images with known homography between them.
This is generally difficult to obtain, since a large number of
corresponding images and correct homographies is required.
Instead, we generate synthetic pairs of images to train the
network. We use images from the MSCOCO dataset, which
contains images of a variety of objects in natural scenes, and
select a random patch out of the image. We then warp the
original image using a random homography and extract the
respective patch on the warped image. The steps outlined are
as follows: 1. Obtain a random patch from the image such
that all the pixels in the patch will lie within the image after
warping the random extracted patch. 2. Perform a random
perturbation in the range [−p, p] to the corner points of the
patch in the original image. We also add a random translation
amount to the patch to ensure the network works for translated
images as well. 3. Warp the original image with the inverse
of the homography between the corners of the original patch
and the perturbed patch. This gives us the warped image. 4.
Extract the patch from the warped image using the corners
of the original patch. This gives us the second patch. 5.
Stack the image patches depthwise to obtain an input of size
MP × NP × 2K, where K is the number of channels in
each patch/image (one channel for grayscale images). The final
output of data generation are these stacked image patches and
the homography between them. These are then passed as inputs
to the deep learning models, and the homography is used as
the ground truth for supervised learning.

B. Supervised Approach

To train a supervised network to estimate the homography
between a pair of images, we use the HomographyNet model
outlined in Figure 11, as proposed by [2].

Fig. 11: HomographyNet Model Architecture

Fig. 12: Loss over Epochs for HomographyNet

Fig. 13: Loss over Iterations for HomographyNet

We use the synthetic data generated in the previous section
to train the network. The HomographyNet model is trained
to regress the amount the corners of the patch need to be
moved so that they are aligned with the second patch, which
is denoted by H4Pt and is used as the labels for the model.
The model is trained on the synthetic data, and the loss is
calculated as the mean squared error between the predicted
homography and the ground truth homography. The model is
trained for a number of epochs, and the loss is monitored to
ensure the model is learning. The model is then tested on a
separate set of synthetic data to evaluate its performance. The
network was trained for 50 epochs, with a batch size of 64, a
learning rate starting at 0.005 and a weight decay of 0.0001.
The EPE losses on the Train, Test, and Validation sets, along
with their average inference times, are shown in Table 1, and
the network structure is shown in Appendix B: Figure 26.

Additionally, the loss over epochs and iterations are shown
in Figures 12 and 13 respectively.

C. Unsupervised Approach

The unsupervised model is trained in a similar way to the
supervised version using the two input patches, but instead it
tries to replicate the warp of the second patch from the first
patch using the predicted homography. This way, the model
does not learn what homography is, it just tries to recreate
the warp performed between the two patches. The model is

Set EPE Loss Inference Time (s)
Train 9.7763 0.0020
Test 9.926 0.0010
Val 9.934 0.0020

TABLE I: EPE Losses and Inference Times for Homogra-
phyNet



Set EPE Loss Inference Time (s)
Train 493.49 0.0630
Test 492.62 0.0180
Val 493.12 0.0550

TABLE II: EPE Losses and Inference Times for Unsupervised
Model

Fig. 14: Loss over Epochs for Unsupervised Model

trained to minimize the photometric error between the warped
first patch and the second patch. In our implementation, the
model was trained for 50 epochs, with a batch size of 64, a
learning rate starting at 0.005 and a weight decay of 0.0001.
The EPE losses on the Train, Test, and Validation sets, along
with their average inference times, are shown in Table 2.
Additionally, the loss over epochs and iterations are shown in
Figures 12 and 15 respectively. Additionally, network structure
is shown in Appendix B: Figure 26 with the addition of
the TensorDLT and Spatial Transformer Network as proposed
in [3]. Unfortunately, it appears as though the unsupervised
model did not learn anything through training, as the EPE
losses are very high and the model outputs are not accurate,
always guessing the same homography. To try to combat this,
the model was trained multiple times varying learning rate,
weight decay, and batch size, but the model was not able to
learn the correct homography.

D. Discussion

When comparing the outputs of the deep learning models
to the actual perturbation between the two input patches, the
supervised model performed much better than the unsuper-
vised model. The supervised model was able to accurately
predict the homography between the two patches, while the
unsupervised model was not able to learn anything. This is
likely due to the fact that the unsupervised model was not able
to minimize the photometric error between the two patches,
and thus was not able to learn the correct homography. The
supervised model was able to learn perturbations between
the two patches surprisingly well – photos with overlaid
ground truth, supervised, and unsupervised homographies are
shown in Appendix B: Figure 25. Even with large warps, the
supervised model was able to predict the homography close to
what the ground truth actually was very often. The last image
was included to show a less-accurate prediction, but many of
the predicted warps were closer to the ground truth, as shown
in the first three images. This supervised model was trained for

Fig. 15: Loss over Iterations for Unsupervised Model

50 epochs, but even training for as little as 20 epochs yielded
comparable predictions.

One aspect of this project which was not implemented was
the panoramic stitching using the deep learning models. This
was due to the fact that the models did not map well to the
task of panoramic stitching, as large translations were not
part of training, and those are the main component of the
homographies in a panorama. Secondly, the fixed image size
of the models made it difficult to apply to images of arbitrary
shape.

REFERENCES

[1] [Online]. Available: https : / / www . cambridgeincolour .
com/tutorials/image-projections.htm.

[2] D. DeTone, T. Malisiewicz, and A. Rabinovich, Deep
image homography estimation, 2016. arXiv: 1606.03798
[cs.CV].

[3] T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor,
and V. Kumar, Unsupervised deep homography: A fast
and robust homography estimation model, 2018. arXiv:
1709.03966 [cs.CV].



APPENDIX A
RESULTS OF TRANDITIONAL PIPELINE

All panoramas were generated with default settings unless
specified otherwise.

A. Training Sets

Fig. 16: Final Pano for Train Set 1

Fig. 17: Final Pano for Train Set 2

Fig. 18: Final Pano for Train Set 3 (start=1)



B. Custom Sets

Fig. 19: Final Pano for Custom Set 1 (d=.5).

Fig. 20: Final Pano for Custom Set 2 (d=.4, no-good-order).

C. Test Sets

Fig. 21: Final Pano for Test Set 1. Note that the checkerboard
pattern makes it incredibly difficult for the technique to find
correct homographies, as features or not unique, so the result
is not perfect. Despite this, the left and right halves stitched
incredibly accurately.



Fig. 22: Final Pano for Test Set 2 (cylindrical=950, no-good-
order). The automatic ordering algorithm is highly dependent
on RANSAC, which itself is an inherently random algorithm,
so it took multiple attempts to have all images included. The
same parameters were used for each run.

Fig. 23: Final Pano for Test Set 3

Fig. 24: Final Pano for Test Set 4. Last two images are
correctly ignored.



APPENDIX B
DEEP LEARNING APPROACH

Fig. 25: Overlays of Ground Truth (Red), Supervised (Blue),
and Unsupervised Homographies (Green)

Fig. 26: HomographyNet Model Architecture Used in Both
Approaches


