
Computer Vision - Project 1 - MyAutoPano
USING 1 LATE DAY

Muhammad Sultan
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: msultan@wpi.edu

Harsh Verma
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: hverma@wpi.edu

Jesdin Raphael
Worcester Polytechnic Institute

Worcester, MA, USA
Computer Science

Email: jraphael@wpi.edu

Abstract—Project1: MyAutoPano focuses on creating a Pa-
naroma using multiple images. To convert images into the same
coordinate system we find the H matrix (Homography matrix)
and then stitch and blend the images. Finding the H matrix is
done in 3 different ways. In Phase 1 the traditional approach
is used to calculate the H matrix by matching corners. This is
done by first finding corners using HarrisCOrner Detection, then
we use ANMS to reduce unwanted corners and get corners in
uniform distance from each other. Once we have our corners
we use matching to match corners from one image to the other.
Ransac is then used to remove the outlier matches. Finally the H
matrix is computed using the corner matches. In Phase 2 we use
supervised and unsupervised methods to compute the H4 matrix.

I. PHASE 1: IMAGE STITCHING WITH TRADITIONAL
APPROACH

In this section we describe the Traditional approach used
to create our Panaroma. The steps for this approach can be
summarized into the following points.

1) Corner Detection
2) Adaptive Non Maximal Suppression (ANMS)
3) Feature Descriptor
4) Feature Matching
5) RANSAC
6) Stitching and Blending

A. Corner Detection

The first step in computing the Homography using the
traditional approach is to compute Corners. Corners are such
pixels where the intensity changes drastically in all directions.
To compute the corner points we use CV2’s Harris Corner
Detection which returns the Corner score Image Cimg and the
corner points. These corners are marked as red dots on the
images as shown in Fig 1.

B. Adaptive Non Maximal Suppression (ANMS)

Using the Corner score Image Cimg and the corner points
we get from Harris Corner Detection we apply ANMS. The
reason for applying ANMS is to minimize weird artifacts by
selecting Nbest equally distributing corner points across the
image. The ANMS algorithm is implemented based on Fig 2.
[1]. The corners left after ANMS are shown in Fig 3.

C. Feature Descriptor

After obtaining the Nbest corners using ANMS we create a
Feature Descriptor for each corner point. To do this we follow
the following steps [1].

1) Create a Patch of size 41x41 around the corner point
2) Apply Gaussian Blur with a kernel size of 7x7.
3) Subsample the blurred image to 8x8
4) Reshape to obtain 64×1 vector
5) Normalize to remove bias and achieve some amount of

illumination invariance.

D. Feature Matching

We want to find the feature correspondence between the
two images so that we can stitch them together. For 1 Feature
Descriptor in Image1 we calculate the sum of Square Differ-
ence (1) with each Feature Descriptor in Image2. Using the
lowest and second lowest SSD’s (best ssd and sec best ssd)
if the ratio best ssd

sec best ssd < min ratio we use it as a match. We
have used min ratio = 0.5. We then repeat this step for all
Feature Descriptors in Image1. This gives us a list of strong
correspondence (matches) for the features.

n∑
j=1

(x1k − x2j)
2 (1)

The features matched are shown in Fig 4.

E. RANSAC (Random Sample Concensus)

We use RANSAC to remove the incorrect matches or
outliers found in the Feature Matching Step. The steps for
RANSAC are shown below [1].

1) Repeat for nmax iterations
a) Select four feature random pairs pi I1 and p′i from

I2.
b) Compute H between pi and p′i pairs.
c) Compute inliers where SSD(p′i, Hpi) < τ , where

τ is threshold (0.5)
2) Keep largest set of inliers.
3) Re-compute least-squares H estimate on all of the inliers.
Applying RANSAC would get rid of feature matching thus

allowing us to calculate a more optimal H estimate. Fig 5
shows the images with removed outliers using RANSAC.



Fig. 1: Corner Points Detected using Harris Corner detection

Fig. 2: ANMS algorithm.

F. Stitching and Blending

Stitching was performed using the cv2 functions perspec-
tiveTransform() and warpPerspective() In order to align the
images and create the final panorama, we tried multiple
techniques:

• Aligning all the images from left to right: Accumulated
warping with each iteration caused the final image to be
too warped to be blended further than 4 images.

• Aligning half the images from left, half from right and
then combining them: This technique worked well for 4
images on each side, but when the right and left were
to be merged, the common areas were too warped to be
blended.

• Applying a cylindrical projection transform to each im-
age, left to right: This technique gave the best results
for the combined panoramas. For each set of images, the
focal length parameter of the cylindrical transformation

paradigm needs to be changed. However, a value of 1000-
1200 worked well with most sets.

G. Results

A summary of our implementation is:

1) Cylindrical transformation improved the results signifi-
cantly. Fig [2] shows (left to right): 4 images of the train
set stitched normally, The same 4 images stitched with
cylindrical transform, the panorama of all the images
combined in the train set (The largest train set of 8
images)

2) When following the two-halves technique, we found
that the centre image becomes too small in size for the
algorithm to detect the feature pairs, hence failing the
stitching.

3) To get rid of too less matches, we implemented a check
in the functions. If the number of feature pairs after
RANSAC was less than 4, the particular image was
skipped.

4)

II. PHASE2

In this section we describe the Deep Learning Approaches
implemented to for finding the Homography estimate. Two
models have been trained for this: Supervised Learning (Su-
pervisedNet) and Unsupervised Learning (UnsupervisedNet).

The input to the SupervisedNet are two patches PA and PB

stacked depthwise along with the H4point matrix which is the
label as shown in Eqn (2). The reason we use H4point instead
of H is that while converting the H matrix into a single vector
we are mixing both the rotational and the translation points
[3].



Fig. 3: Corner Points after ANMS

Fig. 4: Matched Features

Fig. 5: Outliers removed with RANSAC

Fig. 6: Stitched Image Result Using Traditional Approach

H4point =


∆u1 ∆v1
∆u2 ∆v2
∆u3 ∆v3
∆u4 ∆v4

 (2)

The input to the UnsupervisedNet are two patches PA and
PB stacked depthwise along with the image A IA and Corners
of Patch A CA.

A. Data Generation

To generate a large dataset with known Homography is dif-
ficult. Therefore we use the MSCOCO dataset which contains
images of a lot of objects and natural scenery. The following
steps were performed for Dataset Generation

1) Randomly crop image to a patch size of 128x128. This
is patch A PA.



Fig. 7: Non-Cylindrical (Leftmost Image) vs Cylindrical Stitching.

Fig. 8: Phase 1 Test Results

2) Randomly add some perturbations in the range of [−ρ,ρ]
to the four corners of patch A. (Chose ρ = 32). This gives
us corners B CB of Patch B

3) Compute HAB given the correspondences of PA and
PB .

4) Get HBA using by getting the inverse of matrix HAB .
5) Apply HBA on image to generate Warp Image.
6) Obtain PA from image and PB from warped image.
7) Stack PA and PB depth-wise. This will be the input to

our model.
8) Calculate Labels H4point using Eqn. (2).

B. Supervised Net

In the supervised approach, we use the network architecture
proposed in the paper by DeTone Et al. [3]. This architecture is
shown in the in Figure 9. The input to the Architecture is two
patches PA and PB stacked depth-wise. The network has eight
convolutional layers. Each Convolutional layer has a ReLU
Layer and a Batchnorm2D layer following it. Max pooling is
done after every two convolutional layers. The output of the
last convolutional layer is passed through two fully connected
layers. The network output is an 8 vector which is H4point

matrices. The model is trained using a mini-batch size of 128
over 50 epochs using an SGD optimizer with a learning rate
of 0.05 and a momentum of 0.9. The loss function used is the
mean squared error function.

C. Unsupervised Net

For the Unsupervised portion, the first part of the neural
network is the Supervised Net. This gives us the H4point

prediction from PA to pB The Unsupervised Net has two
extra steps as compared to the Supervised Net. This is because
here we do not have the true labels for H4points. Thus we
need to reconstruct PB using PA and the predicted H4points.
The first step is the Tensor Linear Direct Transformation
(DLT). It takes H4point matrix and the corner points of (PA)
and computes the 3x3 Homography matrix which transforms
(PA) to (PB). This Homography matrix is then used with
the kornia.geometry.transform.warp perspective func-
tion to warp (PA) to get a prediction of (PB), denoted
as (P̃B). L1 loss is then calculated between this predicted
between (P̃B) and the actual patch (PB).

However, in our implementation, the model starts with low
L1 loss values and stays roughly around the same value over
as many epochs as we run, indicating that the model does
not learn anything. This model is also trained over 50 epochs
with a batch size of 128. The AdamW optimizer is used with
a learning rate of 1e−4, β1 value of 0.9, β2 value of 0.99, and
ϵ value of 1e−8.

The issue is that the very first batch of H4points matrices
we get, has these matrices with very small values. The values
are so small that the DLT calculates the 3 x 3 Homography
matrices to be almost Identity (which is logical). This means
that the (P̃B) is almost always going to be identical to (PA),



Fig. 9: Supervised Network Architecture

since applying an ’almost’ identity matrix to (PA) is not going
to change it much.

We have tried to train the model with different parameter
value combinations for the Learning Rate, Batch Size,
and number of patches used. We also tried calculating
the math for the DLT manually by taking some arbitrary
values and comparing them with the formulas shown
in the paper for the DLT network. We further verified
our DLT implementation by comparing the 3 x 3
matrices we got from it with the ones we got from
kornia.geometry.transform.get perspective transform
from function, and they were identical. We then proceeded
to verify to change the loss function to check if it made a
difference, but unfortunately, it did not.

D. Results and Discussion

The table below shows the results of the training, validation,
and testing of the Supervised and Un-supervised approaches.

Supervised Unsupervised
Train Val Test Train Val Test

EPE 5.10 15.58 15.70 0.223 0.222 0.224
time (min) 7.46 17.55

TABLE I: Results of Supervised and Unsupervised Learning
for Homography Estimation

The Fig 10 shows the patches PA, PB , P ′
B displayed on the

test image for both Supervisde and Un-Supervised Learning.
PA is shown in Blue, PB is shown in Red and P ′

B is shown in
green. We can see from Fig. 10 that the predicted P ′

B for the
Supervised Model is similar to the actual PB . On the other
hand, the Un-Supervised Model has a large error where P ′

B is
more similar to PA.

Fig 11 and Fig 12 show the stitching using the H estimate
by the supervised and unsupervised Models. The supervised
model works better when stitching a lower number of images
as shown in Fig 13. After that, the error in the H estimate
accumulates leading to incorrect stitching.

Fig 15 shows the Supervised (Right) and Unsupervised Test
results for the Trees and Towers Datasets.

REFERENCES

[1] R. . R. Perception and M. Learning. (2024) Rbe 549 spring 2024 - project
1. [Online]. Available: https://rbe549.github.io/spring2024/proj/p1/

[2] R. Kedia. (2024) Panorama stitching. [Online]. Available: https:
//www.scribd.com/document/510892500/Panorama-Stitching

[3] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Deep image homography
estimation,” arXiv, Jun. 2016.

https://rbe549.github.io/spring2024/proj/p1/
https://www.scribd.com/document/510892500/Panorama-Stitching
https://www.scribd.com/document/510892500/Panorama-Stitching


(A) Supervised Learning

(B) Un-Supervised Learning

Fig. 10: Image shows the computed points using H estimated
in green. Patch A is shown in Blue and Patch B is shown in
Red.

Fig. 11: Stitching performed using H estimate of Supervised
Model (Unity Hall)

Fig. 12: Stitching performed using H estimate of UnSupervised
Model (Unity Hall)



Fig. 13: Stitching performed using H estimate of Supervised
Model between 2 images

Fig. 14: Visualization of H estimate on Test Set)



Fig. 15: Phase 2 Test Results for Trees and Tower Dataset. (Left two images are supervised and the right two images are
unsupervised)


	Phase 1: Image Stitching with Traditional Approach
	Corner Detection
	Adaptive Non Maximal Suppression (ANMS)
	Feature Descriptor
	Feature Matching
	RANSAC (Random Sample Concensus)
	Stitching and Blending
	Results

	Phase2
	Data Generation
	Supervised Net
	Unsupervised Net
	Results and Discussion

	References

