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Abstract—In this project, we propose techniques for stitching
images to generate seamless panoramic scenes. The process
involves using pairs of images with overlapping regions. Our
objective is to merge these images into a single panoramic image.
Our approach encompasses both traditional computer vision
methods and deep learning techniques. The classical method
we’ve used is a feature-based technique that establishes a re-
lationship between images by identifying and matching features.
For the deep learning component, we employed both supervised
and unsupervised learning strategies to estimate the homography,
which is the transformation between a pair of images, to achieve
the desired output.

I. PHASE 1: CLASSICAL FEATURE BASED TECHNIQUE

Feature-based methods focus on identifying features present
in the overlapping areas of images. These features, known
as keypoints, are matched between the images. We use this
matching to estimate the homography, which represents the
transformation between these sets of points from the two
images. This homography is then applied to warp the second
image to align with the first. Following this alignment, the
images can be seamlessly stitched together, using the first
image as the reference. Each subsection of our documentation
provides detailed explanations of the methodologies used and
the resulting outputs of the images.

A. Corner Detection

The concept centers on establishing connections between
images by identifying a set of features. Corners are particularly
effective for this purpose as they are discernible from various
viewpoints. By detecting as many corners as possible in a
given image, we can compare these features between images.
This comparison provides insights into the geometric relation-
ship between the images. For corner detection, we utilized
the Harris corner detection function available in OpenCV. We
determined the following parameters to be optimal for corner
detection: a kernel size of 3, a Harris K parameter of 0.04
Figure 1 illustrates the corners detected in the images using
these parameters.

B. Adaptive Non Maximal Suppression (ANMS)

Upon detecting corners in each image, the challenge is to
identify the ”best” corners, characterized by their distinctive-
ness among local peers and even distribution across the image
for superior homography. This is addressed using Adaptive
Non-Maximal Suppression (ANMS), which operates by first
selecting local maxima among the corners, focusing on those

(a) Sample Image

(b) Harris Corners

Fig. 1: Image corner detection

farthest from stronger corners. The essence of ANMS is its
effectiveness in evenly distributing corners, countering the
tendency of corner detectors like the Harris method to identify
clusters of corners, rather than individual ones. This is due
to corners encompassing multiple pixels, particularly in high-
resolution images. ANMS overcomes this by choosing points
maximally distant from stronger corners, ensuring that when
the top N best corners are selected, they represent individual
points from each cluster. Figure 2 illustrates the transformation
from clustered to well-distributed, optimal corners achieved
through ANMS.



(a) Sample Image 1

(b) Sample Image 2

Fig. 2: Image corner After ANMS

C. Feature Descriptor

To effectively compare corners across images, we assign
them unique identities using Feature Descriptors. In line with
our approach outlined in the problem statement, we first
select corners that fit well within a 40x40 dimension. These
selected corners are then flattened into a 1D array. To create
a representative sample, we pick pixels at every 25th index,
essentially capturing every 5th pixel in a row-wise or column-
wise manner. This process results in a patch of dimensions
8x8. We standardize and blur this patch to ensure a smooth
variation, providing each corner with a distinct and comparable
identity, encapsulated in its Feature Descriptor. This method-
ology allows for precise comparison and alignment of corners
across different images.

D. Feature Matching

The feature descriptors obtained through our process are
then matched with descriptors from other images, a crucial
step as it indicates the extent of overlap between the images.
Ideally, photometric comparisons would provide the most
accurate measure of overlap, but these methods are compu-
tationally expensive. Instead, we rely on geometric features
like corners. Our comparison algorithm is based on David

Lowe’s ratio test.A simplistic approach would have been to
minimize the distance between feature descriptor vectors, but
this risks false positives leading to inaccurate matches. The
ratio test circumvents this by comparing the distances of
the first and second best feature descriptors. If the ratio of
these distances falls below a certain threshold, the pair is
considered a good match and is added to the feature match
set. This process ensures the uniqueness and significance of
each match. If the second-best match is comparably close to
the first, indicating a lack of uniqueness, the pair is discarded.
This method effectively screens for false positives, providing
a straightforward and efficient way to match features across
different data sets.

Fig. 3: Feature matching

E. RANSAC

The feature matches we’ve identified, like any data set,
are susceptible to inaccuracies and outliers. To distinguish
between valid data and outliers, it’s necessary to employ a
data model to fit and analyze the data. While manual pruning
or using standard deviation and quartiles for data selection are
possible methods, they require extensive tuning and may not
generalize well across different data sets. Instead, we utilize
Random Sample Consensus (RANSAC), a robust method that
provides a probabilistic approach to creating a dataset free
of outliers. RANSAC helps in identifying the minimal subset
of data that best fits our model and generalizes effectively
to the rest of the data points. In our context, the model in
question is the homography estimation between a pair of
images. Applying the RANSAC algorithm, we are able to
refine the feature matches.

F. Blending Images(Warping and Stitching)

In our project, we developed a process to stitch two images
together using a homography matrix. This process begins
by assessing the dimensions of each image and identify-
ing their respective corner points. Subsequently, we apply a
perspective transformation to one of the images using the
derived homography matrix. The next step involves creating
a composite canvas, sized to accommodate both the original
and the transformed images. This step is crucial as it involves
translating the images to ensure all coordinates are positive,
thus preventing any part of the images from being lost.
Once the canvas is prepared, the function warps the second
image in accordance with the pre-calculated transformation
and integrates it onto the canvas. The final and critical step



in this process is the overlaying of the first image onto the
warped version of the second image. This results in a seamless
and coherent panoramic image. Our method is particularly
effective in merging images that have overlapping regions,
thereby producing a single, expansive image. This approach
has proven to be an efficient solution for creating panoramic
views from multiple images.

Fig. 4: Image 1 & 2 Blending

G. Results

In our test set, we encountered some images that either
contained irrelevant content (’garbage’) or had very minimal
overlap with other images, resulting in few or no feature
matches. To address this issue, we implemented a threshold
criterion for feature matching. We established that if the
number of feature matches between a pair of images fell below
10, we classified the image as unsuitable for stitching. Conse-
quently, such images were excluded from the stitching process.
This approach ensured that only images with sufficient overlap
and relevant content were considered, thereby enhancing the
overall quality and coherence of the stitched panorama. Then
we also tried the graph approach where tried to find the best
matching image(having maximum overlap). Computing this on
nomal image size is computationally expensive and for the best
matching image for stiching we rsized all the images in the
lower resolution. To further refine our image stitching process,
we explored a graph-based approach aimed at identifying the
best matching image, defined as the one with the maximum
overlap. Recognizing that computing matches on full-sized
images is computationally intensive, we adopted a strategy
of resizing all images to a lower resolution. This resizing

step significantly reduced the computational load, enabling a
more efficient determination of the most suitable image for
stitching. By focusing on lower-resolution images, we were
able to swiftly and effectively identify the image with the
highest degree of overlap, which is critical for achieving a
seamless and high-quality stitched panorama.

Fig. 5: Set 1 Blending

Fig. 6: Set 2 Blending



Fig. 7: Set 3 Blending

Fig. 8: TestSet 1 Blending

Fig. 9: TestSet 2 Blending

Fig. 10: TestSet 3 Blending
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