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Abstract—(using one late day)
Camera calibration is a crucial step in computer vision systems,
ensuring accurate interpretation of images for various applica-
tions. In this work, we present an automated approach for cali-
brating camera intrinsics and distortion parameters. Leveraging
advanced algorithms and techniques, our method achieves precise
estimation of these parameters, leading to highly accurate results
as demonstrated by the reprojection image. By automatically
calibrating the camera, our approach streamlines the calibration
process, reducing the need for manual intervention and ensuring
consistent and reliable results across different imaging setups.

I. ALGORITHM

The flow of the program logic is provided in Fig 1

A. Homography Estimation

Homography estimation is a fundamental task in computer
vision, essential for tasks such as image rectification, image
stitching, and augmented reality. In this project, I employed
OpenCV’s findChessboardCornersSB function and the Direct
Linear Transform (DLT) algorithm to estimate the homography
matrix between world coordinate points and image points.

I utilized OpenCV’s findChessboardCornersSB function to
accurately detect the corners of a checkerboard pattern in the
provided images. This function provides subpixel accuracy,
ensuring precise localization of corner points even in images
with noise or distortion.

To establish the world coordinate system, I selected the very
first detected corner point near the black square as the origin
in the world frame. Using the known length of the square
(0.0215 m), I estimated the world points of the other corners.
For simplicity, I assumed the Z-coordinate to be 0 without loss
of generality.

I composed the Direct Linear Transform (DLT) algorithm,
similar to previous course projects, to estimate the homog-
raphy matrix. The DLT algorithm takes as input the world
coordinate points and their corresponding image points. To
solve for the homography matrix, I employed the null space
trick, which involves computing the right singular vector
corresponding to the least singular value (close to 0) of the
resulting system. This vector, reshaped into the homography
matrix H. H, represents the transformation between the world
coordinate points and the image points. H was normalized with
its last element.

B. Initial Guess - Intrinsics

Let the extrinsic matrix be given by,

RT = [r1, r2, r3, t] (1)

Homography matrix is related to intrinsic matrix K and
homography matrix H as follows,

H = λK[r1, r2, t] (2)

where, λ is a scalar multiplier. Since r1 and r2 vectors form
an orthonormal basis, we can write,

r1.r1 = 1 = r2.r2; r1.r2 = 0 (3)

Alternatively,

(K−1H1)
T )(K−1H2) = 0 (4)

(K−1H1)
T )(K−1H1) = (K−1H2)

T )(K−1H2) (5)

This can be posed in the following form,

Ah = 0 (6)

Where, h is 9x1 flattened vector formed from H matrix.
This equation was solved using nullspace trick. The right
singular vector corresponding to the least eigen value (last
row of vh of A) was computed to estimate a h. I reshape it
into a matrix and call it H0

C. Initial Guess - Extrinsics

I established the initial guess for the extrinsic parameters
using known intrinsic parameters and the homography matrix
H . First, I inverted the intrinsic matrix K and multiplied it
with H to obtain the rotation and translation matrix [r1, r2, t].
I then scaled this matrix by a factor λ. Finally, I computed
the third column of the rotation matrix r3 by taking the cross
product of r1 and r2, completing the extrinsics matrix.

D. Lens distortion

From the known intrinsic and extrinsic matrix, the world
coorinates were projected onto ideal image coordinates. The
image coordinates were converted to normalized image coor-
dinates to avoid numerical issues with high pixel values and
then distorted using the following equation,

xdistorted = x
(
1 + k1r

2 + k2r
4
)

(7)

ydistorted = y
(
1 + k1r

2 + k2r
4
)

(8)

Where, r is the radial distance from the center of the image.
Distorted normalized image coordinates were converted to the
original image coordinates by offsetting with image center
(from intrinsic).



Fig. 1: Flow Chart
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Fig. 2: Loss vs optimization iterations

E. Minimize Reprojection Errors

Error function was composed to perform the following,
• Project world coordinate into image coordinate using the

provided intrinsics and extrinsics.
• Distort the image coordinates with the lends distortion

model.
• Compute the norm of projection error over all the corner

points across the entire image set.
The error function was written using PyTorch CPU Tensors in
an efficient vectorized manner. The following error function
was minimized using PyTorch Adam optimizer with a 1e-4 lr
for 200 iterations.

MSE =
1

n

n∑
i=1

(uvi − ûvi)
2 (9)

The loss curve from optimization is given in Fig. 2. The
K obtained from initial estimation were already good and the
extra optimization refined it further as shown by the loss curve.

II. RESULTS

Estimated intrinsic matrix is given by,

K =

 2057.12702 −1.272264 763.073467
0 2042.454596 1349.992139
0 0 1

 (10)

Estimated distortion coefficients are,

k = (k1, k2) = ( 0.006403 −0.01392 ) (11)

The images were undistorted using the estimated parameters
and the world corners were reprojected onto the image Fig 3.

The mean squared error for all the corners (across all the
images) is found to be 0.3263.
Alternatively, the norm of squared error for all the corners
(across all the images) is found to be 0.5712 pixels. Error is
under a pixel!



Fig. 3: Reprojection of world corners into undistorted images

Additionally, the obtained estimates show good agreement
when cross verified against the MATLAB’s camera calibration
application’s output.

The distortion coefficients were quite small as expected
too. It is likely because the camera was far from the object
compared to the dimension of the lens. Additionally, Pixel
phone might be doing software corrections to undistort the
images already.

III. CONCLUSION

In conclusion, this work has successfully achieved automatic
calibration of camera intrinsics and distortion parameters.
Through meticulous calibration procedures and advanced algo-
rithms, we have attained highly accurate results, as evidenced
by the quality of the reprojection image. The precision of our
calibration process underscores its effectiveness in accurately
modeling the behavior of the camera system. These calibrated
parameters will serve as a crucial foundation for various
computer vision tasks, enabling robust and reliable analysis
of images captured by the camera.
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