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Abstract—Camera calibration refers to the process of
estimating camera parameters such as focal length, distortion
coefficients, and principal point. It is a crucial and time-
consuming component of any computer vision study that uses
three-dimensional geometry. In this assignment, we calibrate the
camera by calculating its intrinsic and extrinsic parameters and
modeling any potential image distortion using a radial-tangential
model that is based on Zhang’s study on camera calibration.
We estimate the relationship between a 2D point in space and
its associated image point based on the intrinsic, extrinsic, and
distortion model of the camera. We then optimize the error
between actual points and points following distortion correction.

Index Terms— Calibration, Intrinsic, Extrinsic, Radial distor-
tion, Focal length, Principle points, Optimization

I. INTRODUCTION

Estimating a camera’s properties is the process of camera
calibration. In other words, we possess every piece of infor-
mation required to accurately establish a connection between a
3D point in the real world and its corresponding 2D projection
in the image captured by that calibrated camera, including
parameters and coefficients.The process involves solving the
problem in closed form first, then refining it non-linearly using
the maximum likelihood criterion. The steps taken to execute
this process are:

1) Create a pattern on paper and adhere it to a flat surface.
2) Move the model plane or the camera to capture a few

shots of it in various positions.
3) Locate the image’s feature spots (corners)
4) Calculate the Homography between the image feature

points and the calibration target
5) Estimate all of the extrinsic parameters as well as the

intrinsic parameters using the closed-form solution.
6) Determine the radial distortion coefficients by initially

assuming that they are 0.
7) Use the optimization problem to minimize the geometric

error, which will refine all the values.
8) Re-project the values and determine the Camera Calibra-

tion Matrix

II. DATA EXTRACTION

A. Calibration Dataset

The Zhang research uses a calibration target (checkerboard
in our case) to estimate camera intrinsic parameters. The

calibration target used is shown in Figure 1. This was printed
on A4 paper, and each square measured 21.5mm. Thirteen
photos were captured with the focus locked on a Google
Pixel XL phone and will be used for calibration.
A 2D point is denoted by m = [u, v]T . A 3D point is denoted
by M = [X,Y, Z]T . We use m̃ to denote the augmented
vector by adding 1 as the last element: m̃ = [u, v, 1]T ,
and M̃ = [X,Y, Z, 1]T . A camera is modeled by the usual
pinhole: the relationship between a 3D point M and its image
projection m is given by

sm̃ = K
[
R t

]
M̃

where s is an arbitrary scale factor, [Rt], called the extrinsic
parameters, is the rotation and translation which relates the
world coordinate system to the camera coordinate system, and
K, called the camera intrinsic matrix, is given by

K =

α γ u0

0 β v0
0 0 1


with (u0, v0) being the coordinates of the principal point,

α and β the scale factors in image u and v axes, and γ the
parameter describing the skewness of the two image axes.

B. Corner Detection

Finding the pixel coordinates of each image’s chess board
corners is the first step. The cv2.findChessboardCorners
method is used to find points. The number of inner corners
that need to be identified is (9,6), which is the pattern size
parameter. For every picture, a total of 54 corner points are
located.

C. Homography Estimation

The homography between the world and picture coordinates
is specified up to scale. The homogeneous system of linear
equations is constructed using the homographies from each
calibration picture. Eigen decomposition or singular value
decomposition can be used to determine the system’s solution.
Our initial camera intrinsics estimations originate from this
solution.



Fig. 1. CheckerBoard Pattern

For our calculations, we assume the model plane is on Z =
0 of the world coordinate system. We denote the i-th column
of the rotation matrix R by ri. From this, we get

s

uv
1

 = K
[
r1 r2 r3 t

] 
X
Y
0
1


= K

[
r1 r2 t

] XY
1

 .

By abuse of notation, we still use M to denote a point on the
model plane, but M = [X,Y ]T since Z is always equal to 0.
In turn, M̃ = [X,Y, 1]T . Therefore, a model point M and its
image m are related by a homography H:

sm̃ = HM̃ with H = K
[
r1 r2 t

]
As is clear, the 3×3 matrix H is defined up to a scale factor.

Using cv2.findHomography, we get the Homography matrix
from these locations. We will obtain thirteen H matrices in
total after this step. The computed Homography matrix is then
used to derive the intrinsic parameters.

III. PARAMETER ESTIMATION

We’re attempting to obtain an accurate initial estimate of the
parameters so that we can input it into the non-linear optimizer.
Next, we’ll define the parameters used in the code.

The image points are denoted by x, the world points by
X, the radial distortion parameters by k=[k1,k2], the camera
calibration matrix by K, and the rotation and translation of the
camera in the world frame by R and t, respectively.
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(m) Image 13

Fig. 2. Input Images
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Fig. 3. Corners of Input Images

A. Closed-Form Solution

We can denote the columns if the homography matrix by
H =

[
h1 h2 h3

]
. From the homography calculated, we

can get: h1h2
h3

 = λK
[
r1 r2 t

]
,

where λ is an arbitrary scalar. Using the knowledge that r1
and r2 are orthonormal, we have:

hT
1 K

−TK−1h2 = 0 ,

hT
1 K

−TK−1h1 = hT
2 K

−TK−1h2

Let

B = K−TK−1 ≡

B11 B12 B13

B12 B22 B23

B13 B23 B33


B1 =

 1/α2

−γ/(α2β)
(v0γ − u0β)/(α

2β)


B2 =

 −γ/(α2β)
(1/β2) + (γ2/(α2β2))

−γ(v0γ − u0β)/(α
2β2)− v0/β

2



B3 =

 (v0γ − u0β)/(α
2β)

−γ(v0γ − u0β)/(α
2β2)− v0/β

2

(((v0γ − u0β)
2)/(α2β2)) + ((v20)/β

2) + 1


Note that B is symmetric,hence can be defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]
T .

Let the ith column vector of H be hi =

hi1

hi2

hi3

. Then we

have:
hT
i Bhj = vTijb

Let the ith column vector of H be hi =

hi1

hi2

hi3

T

.

With vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3

 .

Therefore, the two fundamental constraints from a given
homography, can be rewritten as 2 homogeneous equations in
b: [

vT
12

(v11 − v22)
T

]
b = 0.



If there are n images of the model plane are observed, by
stacking such equations we get

V b = 0.

B. Camera Intrinsic Parameters

Using the equation for vij , we compute the V matrix in
order to determine the intrinsic parameters.The solution to
V b = 0. is well known as the eigenvector of V TV associated
with the smallest eigenvalue. When we solve for V using
singular value decomposition(SVD),it yields b.This b can be
mapped to the matrix B. Next, α, β, γ, u0, v0 are calculated
using this B. Without difficulty, we can uniquely extract the
intrinsic parameters from the matrix B.

v0 =
B12B13 −B11B23

B11B22 −B2
12

λ = B33 −
B2

13 + v0(B12B13 −B11B23)

B11

α =

√
λ

B11

β =

√
λB11

B11B22 −B2
12

γ = −B12α
2β

λ

u0 =
γv0
β

− B13α
2

λ

The camera intrinsic matrix, is given by

K =

α γ u0

0 β v0
0 0 1


C. Camera Extrinsic Parameters

The extrinsic parameters for every image can be read-
ily determined if K is known. Each homography’s extrinsic
parameters are now calculated, and all of these values are
appended to the extrinsic matrix.

r1 = λA−1h1 (9)

r2 = λA−1h2 (10)

r3 = r1 × r2 (11)

t = λA−1h3

with
λ =

1

∥A−1h1∥
=

1

∥A−1h2∥

D. Distortion Parameters

We can assume that the distortion matrix, that is
[
k1
k2

]
is

equal to
[
0
0

]
for a reasonable initial estimate since we assumed

that the camera has negligible distortion.

IV. ERROR OPTIMIZATION & REPROJECTION

The mathematical norm of the difference between the
coordinates of the observed corners and the coordinates of
the corners reprojected using the estimated parameters—also
known as the geometric error—was selected as the error
to be minimized. To do the non-linear minimization of this
reprojection error, all of the various parameters that were to
be optimized were combined into a single vector and supplied
to the scipy library’s optimize.minimize() function. We emply
the Powell method in the minimize function to optimize our
error.

Geometric Error:
N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K,Ri, ti,Xj ,k)∥

Optimization Function:

argminfx,fy,cx,cy,k1,k2

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K,Ri, ti,Xj ,k)∥

V. CONCLUSION

Before the optimization, K matrix and distortion were:

K =

2.0652566× 103 −2.9397471 7.6467615× 102

0 2.0534834× 103 1.3627693× 103

0 0 1



Distortion =

[
0
0

]
After the optimization the values changed to:

K =

2.06105926× 103 −2.82052649 7.64706888× 102

0 2.04942358× 103 1.36286775× 103

0 0 1



Distortion =

[
0.07122434
−0.38982751

]
The errors for the 13 images reduced to:



Image Initial Error New Error
1 0.692 0.526
2 0.712 0.593
3 0.766 0.671
4 0.818 0.737
5 0.789 0.698
6 0.781 0.678
7 0.757 0.693
8 0.726 0.667
9 0.721 0.656

10 0.710 0.642
11 0.738 0.663
12 0.783 0.704
13 0.782 0.710

TABLE I
COMPARISON OF INITIAL AND NEW ERRORS FOR EACH IMAGE TAKING

MEAN

Image Initial Error New Error
1 37.37 28.93
2 76.86 64.60
3 124.10 109.85
4 176.61 160.81
5 213.00 189.52
6 253.01 221.16
7 286.14 261.47
8 313.69 286.70
9 350.25 317.55

10 383.43 345.02
11 438.25 391.75
12 507.19 453.75
13 548.78 494.96

TABLE II
COMPARISON OF INITIAL AND NEW ERRORS FOR EACH IMAGE TAKING

SUMMATION

In this study, we employed Zhang’s camera calibration
method to initially calibrate the camera. The obtained results
demonstrated a satisfactory calibration with reasonable accu-
racy. However, seeking further improvement, an optimization
process was employed to refine the calibration parameters.

The optimization process led to noticeable enhancements
in the calibration accuracy. The refined intrinsic parameters,
distortion coefficients, and error values exhibited superior
performance compared to the initial calibration. This outcome
signifies the effectiveness of optimization techniques in fine-
tuning camera calibration, resulting in a more precise mapping
between 3D world coordinates and 2D image coordinates. The
final reprojected results are shown in Fig. 4.

In conclusion, the combination of Zhang’s method for
the initial calibration and subsequent optimization yielded
superior results, providing a calibrated camera with enhanced
accuracy, which is crucial for various computer vision and
image processing applications
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Fig. 4. Results of Input Images


