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Abstract—In this Homework we will be working on calculat-
ing camera calibration parameters. Camera calibration means
estimating any camera’s intrinsics, extrinsics and distortion
parameters. Intrinsic parameters consists of focal length and
principal point position and distortion parameters are coefficients
of distortion. Camera calibration is one of the most important
part of any computer vision project. In this homework we will
be implementing a well known camera calibration technique
proposed by Zhengyou Zhang.

Index Terms—Camera Calibration, Intrinsic camera parame-
ters, Distortion

I. INTRODUCTION

This work aims to calibrate a camera using a checkerboard
pattern with a square size of 21.5 mm. The calibration process
involves two key steps:

1) Intrinsic parameter estimation: This determines the
camera’s internal characteristics, including the principal
point coordinates, scale factors in image axes, and
distortion coefficients. These parameters are estimated
through a non-linear optimization process that minimizes
the projection error between real-world points and their
corresponding image locations.

2) Extrinsic parameter estimation: This defines the cam-
era’s position and orientation in the world coordinate
system. It involves estimating the rotation and translation
vectors that relate the world and camera coordinate
systems.

The initial estimates for both intrinsic and extrinsic pa-
rameters are crucial for the optimization process to converge
efficiently. The checkerboard pattern serves as a reference grid
during calibration, allowing accurate correspondences between
real-world points and their image pixels.

II. ESTIMATION OF THE INTRINSIC PARAMETER MATRIX

This section describes the process of estimating the camera’s
intrinsic parameter matrix, which encapsulates its internal
characteristics. The matrix contains:

• (u0, v0): Coordinates of the principal point (optical cen-
ter) in the image plane.

• α, β: Scale factors in the horizontal and vertical image
axes, respectively.

• γ: Parameter describing the skewness between the image
axes.

Homography and Chessboard Pattern:
• Corner Detection: We begin by detecting the corner

points of the checkerboard pattern in the captured image
using OpenCV’s cv2.findChessboardCorners
function.

• Real-World Coordinates: Knowing the physical size of
each square on the checkerboard, we calculate the corre-
sponding real-world coordinates of the detected corners.

• Homography Estimation: Using the detected corner
points in both image and real-world space, we compute
the homography matrix using cv2.findHomography.
This matrix combines both intrinsic and extrinsic camera
parameters.

Deriving Intrinsic Parameters: By utilizing the orthogo-
nality property and specific relationships within the homogra-
phy matrix, we can derive equations to solve for the intrinsic
parameters: u0, v0, α, β, and γ. This requires careful manip-
ulation and algebraic steps based on the known properties of
homography and camera models.
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B is a symmetric and positive definite matrix, thereby pos-
sessing only 6 degrees of freedom (DoF). We define a linear
homogeneous system in the following manner:

b =
[
B11 B12 B22 B13 B23 B33

]T
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Hence, from homography, homogeneous equations can be
written as:

vij =

[
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From above, we can calculate b vector and using this vector
intrinsic parameters can be calculated as follows:
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III. ESTIMATING THE CAMERA EXTRINSIC MATRIX

This section describes the process of estimating the camera’s
extrinsic parameters, which define its orientation and position
in the world coordinate system. The extrinsic parameters are
typically captured in a transformation matrix denoted by Rt.

r1 = αA−1h1

r2 = αA−1h2

r3 = r1 × r3

t = αA−1h3

However, due to potential noise in the data used for estima-
tion, the resulting Rt matrix may not perfectly adhere to the
mathematical properties expected of a pure rotation matrix.

IV. MODELING DISTORTION WITH MINIMAL
ASSUMPTIONS

To begin, we assume minimal camera distortion and ini-
tialize the distortion coefficient vector k to [0, 0]⊤. This
simplifies the distortion model by considering only the first
two terms, resulting in two parameters. While using more
parameters could potentially improve accuracy, this initial
approach prioritizes simplicity.

Later, when incorporating distortion into the calculations,
we employ the provided equations to estimate pixel coordi-
nates. It’s important to note that these equations assume no
skewness in the image frame or sensor (γ = 0).

û = u+ (u− u0)[k1(x
2 + y2) = k2(x

2 + y2)2]

v̂ = v + (v − v0)[k1(x
2 + y2) = k2(x

2 + y2)2]

Here, (u, v) are the ideal (non-observable distortion-free)
pixel image coordinates, (ũ, ṽ) are the corresponding real
observed image coordinates, and k1 and k2 are the coefficients
of the radial distortion.

V. REFINING PARAMETER ESTIMATES THROUGH
OPTIMIZATION

Having obtained initial estimates for intrinsic, extrinsic, and
distortion parameters, we now seek to refine them further.

While the algebraic distance minimization used previously
provided initial values, it lacks clear physical interpreta-
tion. Therefore, we employ Maximum Likelihood Estimation
(MLE), a statistically rigorous method, to obtain more accurate
solutions.

MLE inherently accounts for distortion. This allows us to
simultaneously update all parameter sets (intrinsic, extrinsic,
and distortion) in a single optimization process. The MLE
objective function can be represented as:

n∑
i=1

m∑
j=1

||mij − m̂(A, k1, k2,Ri, ti,Mj)||2 (11)

By minimizing this function, we obtain parameter estimates
that maximize the likelihood of observing the real-world
features given the captured image data. This statistically sound
approach is expected to yield more accurate and meaningful
camera model parameters.

To achieve more accurate parameter estimates, we em-
ploy a least squares minimization approach. This min-
imizes the squared difference between the actual pixel
coordinates of detected corners and their projected co-
ordinates based on the current parameter estimates. To
perform this optimization efficiently, we leverage the
scipy.optimize.least_squares function.

VI. QUANTITATIVE RESULTS

The calibration matrix before and after optimization is as
below:

A =

2065.25 −2.939 764.7
0 2053.48 1362.7
0 0 1


Aoptimum =

2065.25 −2.940 763.1
0 2053.4 1351.8
0 0 1


The distortion coefficients obtained after optimization are:



Koptimum =

[
0.016
−0.116

]

Re-projection error = 0.785

VII. QUALITATIVE RESULTS

The detected corners and re-projected points for given
images are illustrated in Fig.01 to Fig.07.

Fig. 1. Re-projected corners on undistorted image 1

Fig. 2. Re-projected corners on undistorted image 1



Fig. 3. 54 Corners found in the image 11
Fig. 4. Re-projected corners on undistorted image 11



Fig. 5. 54 Corners found in the image 12
Fig. 6. Re-projected corners on undistorted image 12



Fig. 7. 54 Corners found in the image 13
Fig. 8. Re-projected corners on undistorted image 13

REFERENCES

[1] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
pp. 1330-1334, 2000, doi: 10.1109/34.888718.


	Introduction
	Estimation of the Intrinsic Parameter Matrix
	Estimating the Camera Extrinsic Matrix
	Modeling Distortion with Minimal Assumptions
	Refining Parameter Estimates through Optimization
	Quantitative Results
	Qualitative Results
	References

