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Abstract—Calibrating a camera involves determining parame-
ters such as focal length, distortion coefficients, and the principal
point. This process, known as Camera Calibration, stands as a
crucial and time-consuming aspect in any computer vision re-
search that incorporates 3D geometry. Here, I have implemented
”A Flexible New Technique for Camera Calibration” proposed
by Zhengyou Zhang.

I. INTRODUCTION

In this homework, a checkerboard pattern of 10 x 7 (rows
and columns) is given with each square of size 21.5 mm.
This image will be used to calibrate the camera. To map a
real-world point to its corresponding image representation,
two types of matrices come into play. Firstly, the camera
calibration matrix incorporates the coordinates of the principal
point and the scale factors along the image axes. Secondly, the
extrinsic parameters matrix involves rotation and translation,
establishing the relationship between the world coordinate sys-
tem and the camera coordinate system. The first matrix is also
called Intrinsic Matrix which considers Intrinsic parameters
coordinates of the principal point (u0, v0), the scale factors α
and β in image u and v axes, and the parameter γ describing
the skewness of the two image axes.

A =

α γ u0

0 β v0
0 0 1


The second matrix which involves rotation and translation is
given as:

R =
[
r1 r2 r3 t

]
where r1, r2, r3, t each is a 3 x 1 vector.
Nevertheless, owing to the non-ideal characteristics of the
camera lens, image distortion may occur. In this context, we
will make the assumption that the distortion is radial, ex-
hibiting a symmetric nature where ideal image points undergo
distortion along radial directions emanating from the distortion
center. The distortion is quantified by parameters denoted as
k1 and k2, and our objective is to accurately estimate these
radial distortion parameters.

II. INTRINSIC PARAMETERS ESTIMATION

To estimate the homography between the model plane and
its image, initially, the pixel coordinates of the chessboard
corners are identified using the cv2.findChessboardCorners
function. Subsequently, the real-world coordinates of the

chessboard are calculated based on the size of the squares.
Using these coordinates, the Homography matrix is computed
through the cv2.findHomography function. This matrix en-
compasses both the intrinsic and extrinsic matrices. Assuming
the model plane lies on Z = 0 in the world coordinate system,
the following relation is derived.
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This gives the equation for finding Homography matrix (H):

H = A
[
r1 r2 t

]
Using the Homography matrix H from above, we compute vij :

vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1

+hi1hj3, hi3hj2 + hi2hj3, hi3hj3]

As r1 and r2 are orthonormal,

hT
1 A

−TA−1h2 = 0

hT
1 A

−TA−1h1 = hT
2 A

−TA−1h2

These above two fundamental constraints can we rewritten as:

s

[
vT12

(v11 − v22)
T

]
b = 0

If n images of model plane are observed, by stacking n such
above equation,

V b = 0

where V is a 2n x 6 matrix. From this, b a 6D vector is found.

b = [B11, B12, B22, B13, B23, B33]

Finally, from this b vector, intrinsic parameters can be calcu-
lated as shown below:

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23]/B11

α =
√

λ/B11



β =
√
λB11/(B11B22 −B2

12)

γ = −B12α
2β/λ

u0 = γv0/β −B13α
2/λ

After computing these parameters, just enter the values in the
A matrix to get the Intrinsic Matrix A.

III. EXTRINSIC PARAMETERS CALCULATION

The extrinsic parameters for each image can be calculated
using the below equations:

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

where
λ = 1/||A−1h1|| = 1/||A−1h2||

IV. ESTIMATION OF DISTORTION AND NON-LINEAR
GEOMETRIC ERROR MINIMIZATION

Assuming minimal distortion in the camera, the initial esti-
mate of the distortion parameters can be made as k = [0, 0]T .
With this initial estimate, minimization of the reprojection
error can be implemented using the equation:

n∑
i=1

m∑
j=1

||mi,j − m̂(A,Ri, ti,Mj)||2

where n are the number of images of model plane and m are
the points on the model plane. Here, m̂(A,Ri, ti,Mj) is the
projection of point Mj in image i.

Let (u, v) be the ideal (nonobservable distortion-free) pixel
image coordinates, and (ŭ, v̆) the corresponding real observed
image coordinates. The ideal points are the projection of the
model points according to the pinhole model. Similarly, (x, y)
and (x̄, ȳ) are the ideal (distortion-free) and real (distorted)
normalized image coordinates.

ŭ = u+ (u− u0)[k1(x
2 + y2) + k2(x

2 + y2)2]

v̆ = v + (v − v0)[k1(x
2 + y2) + k2(x

2 + y2)2]

where k1 and k2 are the coefficients of radial distortion.
Furthermore, the Least Squares function is employed to

minimize this error and optimize the parameters. Using the
optimized parameters, the mean of the reprojected error for
the given points is compute using:

n∑
i=1

m∑
j=1

||mi,j − m̂(A, k1, k2, Ri, ti,Mj)||2

V. RESULTS

Executing the code, gives me following results:

Aopt =

2.0652566e+ 03 −2.9397471e+ 00 7.6467639e+ 02
0.0000000e+ 00 2.0534836e+ 03 1.3627694e+ 03
0.0000000e+ 00 0.0000000e+ 00 1.0000000e+ 00


Distortionopt =

[
0.00018355 −0.00015911

]
The mean reprojection error (before optimization) comes out
to be 0.8110529542384748.
The mean reprojection error (after optimization) comes out to
be 0.8105802901930453.

Image Error before Optimization Error after Optimization
1 0.05316171 0.05312406
2 0.05783641 0.05780631
3 0.06990129 0.06993464
4 0.07684916 0.07682356
5 0.05121874 0.05113317
6 0.05734893 0.057295
7 0.06645683 0.06644563
8 0.04001038 0.03998399
9 0.05281222 0.05277625
10 0.0501051 0.05006057
11 0.07910402 0.07902345
12 0.09793214 0.09786362
13 0.05831602 0.05831005

(a) Input (b) Chessboard (c) Rectified

Fig. 1: Input, Chessboard, Rectified for Image 1



(a) Input (b) Chessboard (c) Rectified

Fig. 2: Input, Chessboard, Rectified for Image 2

(a) Input (b) Chessboard (c) Rectified

Fig. 3: Input, Chessboard, Rectified for Image 3

(a) Input (b) Chessboard (c) Rectified

Fig. 4: Input, Chessboard, Rectified for Image 4

(a) Input (b) Chessboard (c) Rectified

Fig. 5: Input, Chessboard, Rectified for Image 5

(a) Input (b) Chessboard (c) Rectified

Fig. 6: Input, Chessboard, Rectified for Image 6

(a) Input (b) Chessboard (c) Rectified

Fig. 7: Input, Chessboard, Rectified for Image 7



(a) Input (b) Chessboard (c) Rectified

Fig. 8: Input, Chessboard, Rectified for Image 8

(a) Input (b) Chessboard (c) Rectified

Fig. 9: Input, Chessboard, Rectified for Image 9

(a) Input (b) Chessboard (c) Rectified

Fig. 10: Input, Chessboard, Rectified for Image 10

(a) Input (b) Chessboard (c) Rectified

Fig. 11: Input, Chessboard, Rectified for Image 11

(a) Input (b) Chessboard (c) Rectified

Fig. 12: Input, Chessboard, Rectified for Image 12

(a) Input (b) Chessboard (c) Rectified

Fig. 13: Input, Chessboard, Rectified for Image 13


