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Abstract—Camera calibration is an essential step for 3D com-
puter vision. In this project, the intrinsic parameters (focal length,
principal point, distortions) and extrinsic parameters (rotation
and translation) of a camera using images of a checkerboard pat-
tern are estimated. The technique outlined in Zhengyou Zhang’s
paper is used for this purpose and is divided in two stages,
Initial Parameter Estimation and Non-linear Geometric Error
Minimization. After calibration, accurate intrinsic parameters
and a reprojection error are obtained, enabling the undistortion
and rectification of images from the camera. This report presents
the calibration procedure and results.

• Focal coordinates: fx, fy
• Principal point: cx, cy
• Radial distortion: k1, k2
• Rotation and translation: R, t
Index Terms — Camera calibration, calibration from planes, 2D

pattern, absolute conic, projective mapping, lens distortion, closed-
form solution, maximum likelihood estimation

I. INTRODUCTION

Estimating parameters of the camera like the focal length,
distortion coefficients and principle point is called Camera
Calibration. It is one of the most time consuming and im-
portant part of any computer vision research involving 3D
geometry.

We start with projecting 3D point from world coordinate to
2D point pixel coordinate.

x = P.X (1)

Here, x denotes the image points and X denotes the world
points (points on the checkerboard). P consists of intrinsic
parameters- the coordinates of the principal point (u0, v0),
the scale factors in image u and v axes (α and β), and the
parameter describing the skewness of the two image axes (γ).
and the camera matrix is expressed as a 3x3 matrix:

A =

α γ u0

0 β v0
0 0 1

 (2)

and extrinsic parameters- Rotation (R) and Translation (t)

[R|t] =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (3)

So, total 5 + 6 = 11 DoF. Hence we usually need 6
points to find the projection matrix. In the zhang’s method a
known 3D object ie. a checkerboard pattern is used to calibrate

the camera. The assumption here is that we have known 3D
structure (size and structure) and the surface is flat (Z = 0).
Initially we were having,

xy
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α γ u
0 β v
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
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Z
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 (4)

Fig. 1. Known Checkerboard structure

after considering the assumptions mentioned above we have,xy
1

 =

α γ u
0 β v
0 0 1

r11 r12 t1
r21 r22 t2
r31 r32 t3

XY
1


= A

[
r1 r2 t

] XY
1

 (5)



So now we have a homogeneous matrix (H) with 8 un-
knowns as follows, xy

1

 = H

XY
1

 (6)

where,

H =
[
h1 h2 h3

]
= A

[
r1 r2 t

]
(7)

To calculate the homogeneous matrix we will need 4 match-
ing points from pixel coordinates(from checkerboard images)
and world coordinate (known checkerboard structure). We can
use this homogeneous matrix to calculate the intrinsic matrix
K. Here, we are exploiting the fact that coordinate frame
changes from frame to frame but within a frame we have
same coordinate system.

Fig. 2. Sample images for camera calibration

II. INITIAL PARAMETER ESTIMATION

In this stage, we are trying to get a good initial estimate
of the projection parameters so that we can feed it into the
non-linear optimizer. We have known checkerboard structure
of following dimensions:

• Checker board size, CHESS BOARD DIM = (9, 6)
• The size of Square, SQUARE SIZE = 21.5 mm

This gives us the 3D point coordinates of world frame.
Considering our assumption Z = 0 and using x̃ to denote
the augmented vector by adding 1 as the last element we get,

M̃ =
[
X Y 1

]T
(8)

Similarly from images, the corners of the Checker board are
found using cv2.findChessboardCorners function in OpenCV.
These corners are the 2D point coordinates of image frame
denoted by

m̃ =
[
u v

]T
(9)

Hence, we have -

sm̃ = HM̃

= K
[
r1 r2 t

] XY
1

 (10)

Fig. 3. Corners detected in Checkerboard pattern

Fig. 4. Corners detected in Checkerboard sample images

where s is an arbitrary scale factor.
We know that r1 and r2 are from rotational matrix and r1,

r2 and r3 form an orthonormal basis. These facts add two
constraints

• rT1 r2 = 0
• ∥r1∥ = ∥r2∥ = 1

Using this knowledge, we have

hT
1 A

−Th2 = 0 (11)

hT
1 A

−TA−1h1 = hT
2 A

−TA−1h2 (12)



Let

B = A−TA−1

=

B11 B12 B13

B12 B22 B23

B13 B23 B33

 (13)

If we can calculate B matrix we can compute the intrinsic
matrix parameters as follows,
v0 = B12B13−B11B23

B11B22−B2
12

λ = B33 − B2
13+v0(B12B13−B11B23)

B11

α =
√

λ
B11

β =
√

λB11

B11B22−B2
12

γ = −B12α
2β

λ

u0 = γv0

β − B13α
2

λ

For computing B matrix, we reformulate equation 11 and
12 as,

vT12b = 0 (14)

vT11b− vT22b = 0 (15)

where, v11, v12, v22 are vectors resulted from

vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3



T

(16)

Therefore, the two fundamental constraints 11 and 12, from
a given homography, can be rewritten as 2 homogeneous
equations in b as follows[

vT12
(v11 − v22)

T

]
b = 0 (17)

If n images of the model plane are observed, by stacking n
such equations as (8) we have

V b = 0
where V is a 2n × 6 matrix. This is similar to solving ho-

mogeneous matrix by Singular Value Decomposition (SVD).
In calculation of homogeneous matrix we were having 8
unknowns and we need 4 matching points while in calculation
b matrix we have 6 unknowns hence we need minimum 3
different views ie. minimum 3 images taken from different
views to get a unique solution b.

Once A is known, the extrinsic parameters for each image
is readily computed.

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2
t = λA−1h3

The initial distortion is assumed to be zero and therefore

kc =

[
0
0

]
(18)

Fig. 5. Intrinsic matrix and initial guess of distortion coefficients

Now we have our initial parameter estimation of intrinsic
parameters and distortion coefficients and we can feed it into
the non-linear optimizer.

Sample image 1 2 3 4 5 6
Projection error 0.6458 1.0333 0.7027 0.6073 0.6846 1.7538

TABLE I
PROJECTION ERROR BEFORE OPTIMIZATION.

III. NON-LINEAR GEOMETRIC ERROR MINIMIZATION

We have the initial estimates of A,R, t, kc now we want to
minimize the geometric error defined as given below

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(A,Ri, ti, Xj,k)∥ (19)

Here xi,j and x̂i,j are an inhomogeneous representation.
xi,j is the 2D point coordinates of image frame and
x̂i,j(A,Ri, ti, Xj,k) is the projection of 3D point coordinates
of world frame on image frame considering our initial esti-
mates of A,R, t, kc. Formally, the optimization problem is as
follows:

arg min
fx,fy,cx,cy,k1,k2

N∑
i=1

M∑
j=1

∥xi,j−x̂i,j(K,Ri, ti, Xj,k)∥ (20)

For optimization we are calculating the projection error
considering the radial distortion represented as follows,[

x′

y′

]
=

[
x(1 + k1r

2 + k2r
4)

y(1 + k1r
2 + k2r

4)

]
(21)

with,
r2 = x2 + y2 (22)

Then the projection of 3D point coordinates of world frame
on image frame x̂i,j is can be represented as,

x̂i,j =

[
u
v

]
=

[
x′fx + u0

y′fy + v0

]
(23)

The problem defined in (21) is a nonlinear minimization prob-
lem,which is solved with the Levenberg-Marquardt Algorithm
as implemented in scipy.optimize.least squares.

After rectification of error caused due to radial distortion,
the image is undistorted using cv.undistort() function and
the 3D points are re-projected on the images we used for
calibration. The results are undistorted image and precisely
projected corner points on the image.



IV. RESULTS

Intrinsic matrix calculated for given images is

A =

2.0652× 103 −2.93974 7.64676× 102

0.00000 2.05348× 103 1.36276× 103

0.00000 0.00000 1.00000


Distortion coefficients are

K =

[
2.06522× 10−2
−1.40592× 103

]
Sample image 1 2 3 4 5 6

Projection error 0.5214 0.9850 0.5537 0.6073 0.5137 1.6341
TABLE II

PROJECTION ERROR AFTER OPTIMIZATION.

Fig. 6. Re-projected points on image
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Fig. 7. Re-projected points on image

Fig. 8. Re-projected points on image


