
Homework 1: AutoCalib!
Rutwik S. Kulkarni

Department of Robotics Engineering
Worcester Polytechnic Institute

Email: rkulkarni1@wpi.edu

Abstract—This project addresses the crucial aspect
of camera calibration, a key process in the field of
computer vision. It involves accurately determining a
camera’s intrinsic features, such as the focal length
and the position of the principal point, as well as
its extrinsic parameters and distortion coefficients.
Camera calibration is fundamental to the effectiveness
and precision of various computer vision tasks. In this
endeavor, we will implement the acclaimed calibration
methodology developed by Zhengyou Zhang, a tech-
nique indispensable for the detailed comprehension
and accurate depiction of the unique properties of
cameras used in computer vision applications.

I. INTRODUCTION

Camera calibration is a key process in computer
vision, crucial for accurately mapping the three-
dimensional world to a two-dimensional image
plane. This process corrects for systematic camera
errors, such as lens distortion, and is vital for
applications requiring precision in image interpreta-
tion, such as 3D reconstruction, computer graphics,
robotics, and augmented reality. By calibrating a
camera, one can ensure a more accurate repre-
sentation of the real world in images, a critical
requirement for many computer vision tasks.

In this calibration, we use Zhang’s method,
known for its practicality and ease of implemen-
tation. This method requires just a planar pattern,
like a checkerboard, displayed in various orienta-
tions and positions before the camera, making it
a straightforward approach compared to traditional
methods that need complex setups. Camera cali-
bration involves determining intrinsic parameters,
which include the camera’s focal length, optical
center, and lens distortion characteristics, and ex-
trinsic parameters, which define the camera’s posi-
tion and orientation in the world. These parameters

are essential for the correct interpretation of images,
as they dictate how a camera projects 3D world
points onto its 2D image sensor.

II. DATA

The dataset for our camera calibration consists
of thirteen images of a 10x7 checkerboard pattern,
captured with a Google Pixel XL smartphone. Dur-
ing the capture process, the camera’s focus was
fixed to ensure uniformity across all images. For
camera calibration, the full checkerboard grid is not
utilized. Instead, only a smaller section, specifically
the inner 9x6 grid, is considered. This selective
approach mitigates the potential distortions and
inaccuracies typically found at the checkerboard’s
edges. Each square in the checkerboard measures
21.5mm, providing a precise scale for calibration.
The exact dimensions of these squares are crucial,
as they offer a scale reference essential in deter-
mining the camera’s intrinsic parameters, such as
focal length. The accuracy in these measurements
is fundamental in computing spatial relationships
in the images, forming a solid base for effective
camera calibration.

III. SOLVING FOR CAMERA INTRINSICS AND
EXTRINSICS

A. Detecting Checkerboard Corners

The calibration begins with the detection
of corners on a checkerboard pattern using
the findChessboardCorners function in
OpenCV. For a 10x7 grid checkerboard, excluding
the outer grid, there are 54 corners in each image.
These corners are vital for establishing the rela-
tionship between 2D image points (on the checker-
board) and their corresponding 3D world points.



Fig. 1: Image 1 corners with distortions

B. Intrinsic Camera Matrix K

The intrinsic camera matrix, denoted as K, in-
cludes the camera’s internal parameters and is rep-
resented as:

K =

fx γ cx
0 fy cy
0 0 1


In this matrix, fx and fy are the focal lengths
in pixels in the horizontal and vertical directions,
respectively, cx and cy represent the coordinates
of the principal point (optical center), and γ is the

skew coefficient, which is typically zero in cameras
with square pixels.

C. Homography Matrix Calculation

For each image, a homography matrix H is com-
puted. This matrix relates the 3D world coordinates
to the 2D image coordinates and is given by:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33


The relationship between the image coordinates
(x, y) and world coordinates (X,Y ) is expressed
as: x

y
1

 = H ·

X
Y
1


This equation is then reformulated into a linear sys-
tem Ah = 0, where h is the flattened homography
matrix and A is constructed from the corresponding
points. The solution for h is found using Singular
Value Decomposition (SVD).

D. Employing SVD for Ah = 0 Form

The intrinsic parameters are solved by rearrang-
ing the equations into the form Ah = 0 using SVD.
This involves decomposing the homography matrix
and formulating linear equations that relate the
homography to the camera’s intrinsic parameters.

E. B Matrix Computation

For each homography matrix H , six elements are
computed using the function Vij(H), defined as:

Vij(H) =


h1ih1j

h1ih2j + h2ih1j

h2ih2j

h3ih1j + h1ih3j

h3ih2j + h2ih3j

h3ih3j


The matrix B is then obtained by stacking the
Vij(H) vectors for all homographies and solving
V B = 0 using SVD, where V is the stacked matrix
of Vij vectors.



F. K Matrix Computation

From the matrix B, which is related to the
intrinsic matrix as B = K−TK−1, the elements
of the intrinsic matrix K are extracted using the
following relationships:

λ = B22 −
(B2

02 + v0(B01B02 −B00B12))

B00

α =

√
λ

B00

β =

√
λB00

B00B11 −B2
01

γ = −B01α
2β

λ

u0 =
γv0
β

− B02α
2

λ

Intrinsic Matrix (K):

K =

2055.77 −0.306 763.77
0.00 2038.8 1348.308
0.00 0.00 1.00


G. Decomposition into Intrinsic and Extrinsic Ma-
trices

Once the homography matrices are computed,
they are decomposed to separate the intrinsic matrix
K and the extrinsic parameters (rotation R and
translation T ). This is crucial for distinguishing
the camera’s internal characteristics from its spatial
position and orientation.

H. Extrinsics Computation

The extrinsic parameters (rotation R and transla-
tion t) for each image are determined as follows:

R := K−1H, where R ∈ R3×3

t :=
R:,3

∥R:,1∥
, where t ∈ R3×1

These parameters signify the camera’s position
and orientation in the world.

IV. APPROXIMATE DISTORTION k

A. Estimation of Distortion Coefficients

The distortion in a camera lens is characterized
by a set of distortion coefficients, collectively de-
noted as k. These coefficients account for radial

and tangential distortions that occur due to the
lens geometry and manufacturing imperfections. In
the calibration process, we aim to estimate these
coefficients to correct for such distortions.

The distortion coefficients are approximated us-
ing the detected chessboard corners and the intrinsic
matrix K. The process involves:

1) Mapping the observed 2D points to the undis-
torted 3D space using the intrinsic matrix K.

2) Applying an iterative optimization algorithm
to minimize the reprojection error, which is
the difference between the observed 2D points
and the projected 2D points from the 3D
model, considering radial and tangential dis-
tortions.

3) The resulting coefficients k =
[k1, k2, p1, p2, . . .] represent the radial
and tangential distortion parameters, where
k1, k2 are radial distortion coefficients and
p1, p2 are tangential distortion coefficients.

V. NON-LINEAR GEOMETRIC ERROR
MINIMIZATION

A. Refining Camera Calibration

The process of minimizing non-linear geometric
errors is essential for refining the camera calibra-
tion. This step aims to reduce the discrepancies be-
tween the observed image points and the projected
points from the estimated camera model.

B. Error Minimization Formulation:

The optimization is formulated as the minimiza-
tion of the sum of squared differences between
the observed image points xi,j and the reprojected
points x̂i,j(K,Ri, ti, Xj , k). Mathematically, this is
represented as:

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K,Ri, ti, Xj , k)∥2

where N is the number of images, M is the number
of points per image, K is the intrinsic matrix, Ri

and ti are the rotation and translation for image
i, Xj are the coordinates of the 3D point corre-
sponding to the j-th point in the world space, and
k represents the distortion coefficients.



C. Optimization Objective:
The objective of the optimization process is to

find the intrinsic parameters fx, fy, cx, cy and dis-
tortion coefficients k1, k2 that minimize the repro-
jection error. This is expressed as:

argminfx,fy,cx,cy,k1,k2
{

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K,Ri, ti, Xj , k)∥2
 (1)

D. Implementation:
The implementation of this optimization in-

volves:
1) Employing a non-linear optimization tech-

nique, typically the Levenberg-Marquardt al-
gorithm, to iteratively adjust the camera pa-
rameters (intrinsic and extrinsic) and distor-
tion coefficients.

2) The optimization is performed by minimizing
the sum of squared differences between the
observed image points and the reprojected
points using the current estimates of camera
parameters and distortion coefficients.

3) The optimization continues until the change
in error between iterations falls below a pre-
defined threshold, indicating that the model
has converged to a solution.

E. Outcome:
The outcome of this process is a refined set

of camera parameters and distortion coefficients
that provide a more accurate representation of the
camera’s characteristics, leading to improved per-
formance.

F. Final Parameter Estimation
Post optimization, the final set of parameters

achieved is as follows:
Intrinsic Matrix (K):

K =

2055.77 −0.31 763.77
0.00 2038.79 1348.32
0.00 0.00 1.00


Distortion Coefficients (k):

k =

[
0.012570
−0.089845

]

Reprojection Error:

ReprojectionError = 0.75141

G. Results

Fig. 2: Image 1 corners without distortions

Fig. 3: Image 2 corners without distortions



Fig. 4: Image 12 corners without distortions

Fig. 5: Image 13 corners without distortions

H. Conclusion of Optimization

The optimization results yield a modest improve-
ment in the camera model, evident from the updated
parameters and reprojection error. This progress,
while beneficial, highlights the need for more exten-
sive distortion parameters beyond k1 and k2. Future
work should aim to expand the distortion model to
achieve greater precision in high-stakes computer

vision applications, thereby enhancing the overall
effectiveness of the camera calibration process.
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