
Homework 1 - AutoCalib
Niranjan Kumar Ilampooranan
MS Robotics Graduate Student
Worcester Polytechnic Institute

Abstract—The objective of the assignment is to estimate the
intrinsic and extrinsic parameters, given a calibration target and
a bunch of other images to be used for calibration. This method is
inspired by the work of Zhang et al. [1]. After obtaining the initial
estimates, it is further fine-tuned by minimizing the error using
least squares. Finally, the mean value and the final parameters
are reported.

INTRODUCTION

The image captured by the camera of any object depends
on various parameters, some intrinsic properties to the camera
itself (the image axes skewness and scale factors), and some
would be extrinsic - the pose of the camera. This information
is essential in the complete mapping of the world (metric) co-
ordinates [X , Y] to pixel coordinates [u , v]. This assignment
focuses on obtaining good estimates of these parameters and
is essentially done by following this paradigm.

• Obtain the target pattern - in this case, a checkerboard,
along with its pictures in different orientations with the
camera

• Estimate the homography between the target and the
calibration images

• Using the above information, obtain an initial estimate of
the intrinsic and the extrinsic parameters

• With the initial guess, obtain the radial distortion coef-
ficients and better estimates of the parameters by mini-
mizing the least square error

INTRINSIC PARAMETER ESTIMATION

Before estimating the camera intrinsics, the Homography
between the target image and each image taken using the
camera is derived. This can be obtained by finding the feature
matches (minimum of 4 pairs) between the two images in
question, here it would be the checkerboard corners (only the
squares in the center region of 6×9 is considered). Finally, the
homography can be obtained by singular value decomposition
of the following matrix (x, y are the corner locations in the
target image and xp, yp are the locations of the corners in the
calibration images).

A =

[
x y 1 0 0 0 −x(xp) −y(xp) −xp

0 0 0 x y 1 −x(yp) −y(yp) −yp

]
Stacking such rows to this matrix for each pair would

give a minimum of 8 rows. Singular value decomposition
of this matrix to the 9 × 9 orthogonal matrix V is key in
obtaining the H matrix. The next step would be estimating

the camera intrinsics. The camera intrinsics consist of the
following parameters. α γ u0

0 β v0
0 0 1


To obtain the individual parameters, symmetric matrix B

is used (B = ATA). Some of the values in B (b =
[B11,B12,B22,B13,B23,B33], where the subscripts corre-
spond to the row and column number respectively) can be
used to solve for this parameters exclusively.

For each of the images, another matrix V can be built
using specific linear combination of the homography matrix
columns. This matrix is of size 2n×6, where n is the number
of images. Solving for b in Vb = 0 can be done by taking
the eigenvector of VTV that corresponds to the smallest
eigenvalue. With b, the parameters can be solved for, to give
the entire A matrix.

EXTRINSIC PARAMETER ESTIMATION

With the values of A matrix, the extrinsic parameters -
rotation matrix and translation vector - can be obtained easily
by leveraging the properties of rotation matrices. Given that the
rotation matrix is orthonormal, the following can be equated
to obtain R and t.

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

where ri indicates column i of rotation matrix and hi

indicates column i of homography matrix. λ is obtained by
averaging the norms of r1 and r2.

With R and t obtained, the next focus would be on
obtaining the radial distortion coefficients and making better
estimates of the parameters.



PROJECTION ERROR AND FINAL ESTIMATES

With the initial estimates of the parameters along with the
distortion coefficients set to 0, the following equation is used
to obtain the error between the true and predicted value.

n∑
i=1

m∑
j=1

||mij − m̂(A,Ri, ti,Mj)||2

,where n indicates the number of images, m indicates the
total number of corners in each image, and mij is the pixel
coordinate of the corner j in image i.

While this iterative process continues, the pixel coordinate
is updated using the distortion coefficients as shown below.

ŭ = u+ (u− u0)(k1(x
2 + y2) + k2(x

2 + y2)2)

v̆ = v + (v − v0)(k1(x
2 + y2) + k2(x

2 + y2)2)

where ŭ, v̆ indicate the real pixel coordinates (due to distor-
tion), u0, v0 coordinates of the principal point, and u, v are the
pixel coordinates in the ideal scenario of no distortion. Also,
k1, k2 are the distortion coefficients.

After using least squares to minimise the error and converge
to better estimates, the following values are obtained for
comparison (Hats above indicate initial estimates).

Â =

2057.93 2.31 750.89
0 2046.87 1350.25
0 0 1


Initial error obtained = 2.955

A =

2048.28 −0.02 761.94
0 2037.67 1356.54
0 0 1



k =
[
0.021 −0.122

]
With these estimates, 2.65 was recorded as the mean re-

projection error across all images. This was obtained using
the equation below.

n∑
i=1

m∑
j=1

||mij − m̆(A, k1, k2,Ri, ti,Mj)||2

The following image subset serves as comparison between
the original image with its corners marked, and its re-projected
corners in the same image.

Fig. 1. Corners in Image 1

Fig. 2. Corners in Image 8



Fig. 3. Corners in Image 12

Fig. 4. Corners in Image 13

Fig. 5. Re-projected corners in Image 1

Fig. 6. Re-projected corners in Image 8



Fig. 7. Re-projected corners in Image 12

Fig. 8. Re-projected corners in Image 13
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