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Abstract—The aim of this project is to automatically calibrate
a camera by using it to take multiple images of a checkerboard
of known dimensions in the environment. This approach applies
least-squares minimization to estimate an initial camera intrinsic
matrix and distortion coefficients (up to the 2nd order) and then
use a non-linear geometric optimization to refine the estimates.
A reprojection of the checkerboard’s world coordinates is super-
imposed onto the rectified image to evaluate the performance of
the calibration method.

I. INTRODUCTION

A camera can be easily modeled using the pinhole model.
This linear model can be used to project objects in the 3D
world onto a discrete, 2D image plane in pixels. The transfor-
mation involves the camera extrinsics (rotation and translation
of the world frame with respect to the camera) and the
camera’s intrinsics (geometry of the camera like focal length,
principal point and skewness). The aim of this homework is to
use an object with known positions in the world to calibrate
the intrinsic matrix of a camera. Furthermore, we take into
consideration radial distortion and estimate its value.

Fig. 1. Pinhole model of a camera is used to project a 3D point in space
onto a discrete, 2D image plane

The paper by Zhengyou Zhang (Microsoft Research) pub-
lished a robust and efficient way of automatic camera calibra-
tion. The key steps are estimating the camera intrinsic matrix,
the extrinsics, and approximate distortion, followed by a non-
linear geometric error minimization to refine all parameters.

II. BASIC EQUATIONS

The camera calibration process assumes a pinhole camera
model, as shown in 1. Let X = [X,Y, Z]T denote the 3D
coordinate of a point in the world coordinate frame, and let
x = [u, v]T denote a 2D image coordinate representing the
projection of X on the image plane. Let X̃ = [X,Y, Z, 1]T

and x̃ = [u, v, 1]T represent the homogeneous coordinates of
X and x, respectively.

Upto a scale, s, the projection of the 3D point to a 2D image
is given by

sx̃ = K[R|t]X̃ (1)

where s is a scale factor, (R, t) are the 3x3 rotation matrix
and 3x1 translation vector of the world coordinate frame with
respect to the camera coordinate system (extrinsic parameters),
and K is the camera intrinsic matrix describing the camera’s
inner geometry.

The camera intrinsic matrix describes the focal length in
the x direction, fx, and focal length in the y direction, fy , the
skewness of the image plane axes, γ and the principal point
coordinates, (u0, v0). The intrinsic matrix, K is defined as
follows:

K =

fx γ u0

0 fy v0
0 0 1


In most cases, the γ parameter will be 0, implying that the

image axes, and consequently each pixel, is rectangular.
The abbreviation K−T implies (K−1)T or (KT )−1.
In this model, a key assumption is made that points in the

3D world lie on the same plane. Therefore, X̃ = [X,Y, 0, 1].
This simplifies Equation 1 from a 3x4 matrix to a 3x3 matrix
given by

sx̃ = K[r1|r2|t]X̃

where X̃ = [X,Y, 1]. Since 3D points lie on a plane, we
can relate X̃ and x̃ by a homography such that

sx̃ = HX̃ (2)

with

H = λK[r1|r2|t] = [h1|h2|h3]

III. ESTIMATING CAMERA INTRINSIC MATRIX

To solve camera calibration, a closed-form solution is
computed to generate an initial guess of the camera intrinsic
matrix.

We start by finding corners in the images, considering only
the inner grid of the checkerboard (of size 6 x 9). We can
get these corners using cv2.findChessboardCorners from the
OpenCV library. This yields a set of points that correspond
to a 6x9 world-grid with an arbitrary origin at (0,0) in world-
coordinates.



From this we can compute the homography between the
world-grid and image corners for each of the N images.
I implemented this using my own Direct Linear Transform
function.

Next we define B = A−TA−1. B is a symmetric matrix pa-
rameterized by a 6-d vector b =

(
B11 B12 B22 B13 B23 B33

)
.

Knowing that
Next, from the orthonormal property of the rotation matrix

we generate two constraints. This is used to create a system
of linear equations such that V b = 0. Each image contributes
to two rows of matrix V as follows:[

vT
12

(v11 − v22)
T

]
b = 0

where

vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


Using singular value decomposition, we solve V b = 0 and

recover the b vector. The values of K are unpacked from this
as follows

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

fx =
√
λ/B11

fy =
√

λB11/(B11B22 −B2
12)

γ = −B12f
2
xfy/λ

u0 = γv0/fy −B13f
2
x/λ

IV. ESTMIATING CAMERA EXTRINSICS MATRIX

Once we know the camera intrinsics matrix K, we compute
R and t as follows

r1 = λK−1h1

r2 = λK−1h2

t = λK−1h3

with λ = 1/||K−1h1||. We are not concerned with r3 as
we assume that the 3D model’s Z component is 0.

V. ESTIMATING APPROXIMATE DISTORTION K

Radial distortion can be modeled by the following

ui = u+ (u− u0)[k1r + k2r
2]

vi = v + (v − v0)[k1r + k2r
2]

where (ui, vi) is the observed image coordinate, (u, v) is
the model predicted image coordinate, (k1, k2) are the first

and second order distortion coefficients and r = x2 + y2,
where (x, y) are the 3D point in the camera coordinate frame.

As an initial estimate we can assume minimal lens distor-
tion, k = [k1, k2]

T = [0, 0]T .

VI. NON-LINEAR GEOMETRIC ERROR MINIMIZATION

We refine our estimates of the intrinsic matrix, K, and dis-
tortion coefficient vector, k vector by minimizing the following

argminfx,γ,fy,u0,v0,k1,k2

N∑
i=1

M∑
j=1

||xij−x̂ij(K,Ri, ti, Xj , k)||

(3)
where the reprojection error is the 2-norm of the difference

between the observed image point and the model’s estimate,
which includes radial distortion. I chose to also minimize
for skewness, γ, though this is not necessary and can be
constrained if it is known that the camera has a rectangular
sensor.

VII. RESULTS

After optimization, the images were rectified using
cv2.undistort. The corners were reprojected using the
optimized camera intrinsic matrix, K, and distortion
coefficients, k. These images are shown below. The mean
reprojection error before and after optimization changed by
2%.

TABLE I
MEAN REPROJECTION ERROR BEFORE AND AFTER OPTIMIZATION

Error (unoptimized) Error (optimized)

37.7049 36.9613

The final camera intrinsic matrix, Kf , and lens distortion
vector, kf , were:

Kf =

2049.227 −3.409 7.605
0 2036.762 1363.150
0 0 1


kf =

[
0.00914
−0.06394

]



Fig. 2. Rectified image with reprojected points 1

Fig. 3. Rectified image with reprojected points 2

Fig. 4. Rectified image with reprojected points 3

Fig. 5. Rectified image with reprojected points 4



Fig. 6. Rectified image with reprojected points 5

Fig. 7. Rectified image with reprojected points 6

Fig. 8. Rectified image with reprojected points 7

Fig. 9. Rectified image with reprojected points 8



Fig. 10. Rectified image with reprojected points 9

Fig. 11. Rectified image with reprojected points 10

Fig. 12. Rectified image with reprojected points 11

Fig. 13. Rectified image with reprojected points 12



Fig. 14. Rectified image with reprojected points 13
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