
RBE549: Homework 1: AutoCalib
Edwin Clement

MS RBE
Email: eclement@wpi.edu

Abstract—Calibrating a camera for use in Computer Vision is
one of the primary steps needed before any further processing is
done downstream. The better and closer the calibrated output,
the less effort the rest of the pipeline needs to process the data.
In this paper, camera calibration was obtained via the method
given by Zhang Z. [1].

I. INTRODUCTION

There are two relevant parts to camera calibration. Con-
version to world coordinates to image coordinates which is
denoted by extrinsic parameters and then image coordinates
to pixel positions which are denoted by intrinsic parameters.

The camera extrinsic parameters can be encoded with the
following matrix:

Rt =
[
r1 r2 r3 t

]
The camera intrinsic parameters are denoted by the follow-

ing matrix:

A =

α γ u0

0 β v0
0 0 1


Here, α and β govern the scaling factor, and γ is the degree

of skew. The point (u0, v0) is the optical center of the system.

II. DATASET

To estimate camera parameters, I initially used the given
dataset that contains 13 images taken by a modern phone.
To further test out the system, I created another dataset upon
which exaggerated lens distortion was applied in GIMP.

III. INITIAL PARAMETER ESTIMATION

I used the given pdf as ground truth. Using
convert_from_path method from the package
pdftoimage, the given pdf was converted to an reference
image manipulable by OpenCV.

Using cv2.findChessboardCorners(), the world
corners are obtained.

A. Getting Approximate Camera Intrinsic Matrix

Using the same cv2.findChessboardCorners(),
we can get the corners for each image. Given that the images
are of the same flat object and the fact that the corners are
sorted when returned by the function, we know the exact points
in both images that correspond to each other.

Fig. 1: Ground Truth Checkerboard pattern 9× 6

The following are the detected corners in the image

Fig. 2: Corners in the given image



Fig. 3: Matches with the ground truth, regardless of rotation

Then, Singular Vector Decomposition was used to calculate
the Homography using all the above point correspondences.
RANSAC was not needed here as the points were in order
and we could just use all of them in the calculation as is.

The calculated homography can then be represented in the
following form.

H = A×Rt

where A is the camera distortion and R t is the rota-
tion/translation between the ground truth to the image frame

To calculate A, we can use the following approach.
Given that H =

[
h1 h2 h3

]
we have a closed form solution for A of the form

hT
1 (A

−TA−1)h2 = 0

Let B = A−TA−1, be a symmetric matrix. Then, this
equation can also be written as

hT
1 (A

−TA−1)h2 = vTijb

where

b =
[
B11 B12 B22 B13 B23 B33

]

vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


By using similar math as we used in calculating homogra-

phy, we can get A matrix. In my particular case, my initial
guess was

b =


1.141× 107

−6.8529× 108

5.814× 107

1.866× 105

−0.0006
0.9999


A =

1188.1776 0.0000 557.6944
0.0000 561.9869 1201.2464
0.0000 0.0000 1.0000


Note that it is assumed there is no skew error which is why
γ = 0.

B. Estimate approximate R and t or camera extrinsics

Using the approximate values of A and h, we calculate the
extrinsic parameters of the camera for each image.

r1 = λK−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

The Resultant vectors can be stacked to form a 3 times4
matrix like so

Rt =
[
r1 r2 r3 t

]
C. Approximate Distortion k

This however doesn’t account for the radial distortion inher-
ent in cameras. The initial guess for the distortion parameters
were set to 0, i.e.

k =
[
0 0

]
D. Non-linear Geometric Error Minimization

For numerically approximating it, we use an
iterative approximating method given in SciPy,
scipy.optimize.least_squares.

We take the projected corners according to the
calculated camera parameters, distort it with the assumed
values for distortion and then minimize the error
with the corners found by the visual method used by
cv2.findChessboardCorners().

We are trying to minimize the following

arg min
fx,fy,cx,cy,k1,k2

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(A,Ri, ti,Xj , k)∥

This gives us the following optimized camera intrinsic
matrix and the distortion co-efficients:

A′ =

1188.1776 0.0000 557.6944
0.0000 561.9869 1201.2464
0.0000 0.0000 1.0000


k′ =

[
0.0002 0.0000

]



TABLE I: Re-Projection errors on given dataset

Experiment Error Value

Initial A and k = [0, 0] 542.64
Optimized A and k 541.05

IV. RESULTS

Following are the results obtained before and after applying
the optimization method

Fig. 4: Reprojected Corners on given dataset

This low improvement is due to the extremely good software
of the modern-era smartphones. In order to truly test the limits
of the algorithm, I modified the images used with a lens distort
filter in GIMP and here are the results for that dataset. With
this one, the results are as follows:

TABLE II: Re-Projection errors on new Data: 4% better

Experiment Error Value

Initial A and k = [0, 0] 888.46
Optimized A and k 852.14

REFERENCES

[1] Z. Zhang. A flexible new technique for camera calibration. IEEE
transactions on pattern analysis and machine intelligence, 22(11):1330–
1334, 2000.

(a) Source Image

(b) Undistorted Image with Projected
Corners

Fig. 5: Applying algorithm on manually distorted data


