
RBE/CS 549 - HW1: AutoCalib
Using 1 Late Day

Blake Bruell
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

babruell@wpi.edu

Abstract—In this paper the robust technique for automatic
camera calibration proposed in “A Flexible New Technique for
Camera Calibration” by Zhang is explained step by step and
tested on a dataset. The technique uses a set of images of a
planar pattern at different (at least 2) orientations. Homographies
for each image are approximated with a closed form solution,
and then minimized. These homographies are used to calculate
camera intrinsics and extrinsics using a closed form solution, and
then the intrinsics alongside distortion parameters are optimized
using the Levenberg-Marquardt algorithm across all images
simultaneously.

I. INTRODUCTION

A. Perpective Projection Model

A camera captures a set of 3D world points (or model
points) via a 2D sensor yielding 2D coordinates (or image
points), and thus a projection between these two coordinates
is required. A 2d image point is denoted x = (x, y)⊤, and its
homogeneous representation is x̄ = (x, y, 1)⊤. A 3D world
point is denoted by X = (X,Y, Z)⊤, and its homogeneous
representation is X̄ = (X,Y, Z, 1)⊤. This transformation is
modeled via a pinhole camera, which gives the following [1]:

sx̄ = K
[
R t

]
X̄ (1)

where s as an arbitrary scale factor, K is the camera intrinsics
matrix, and R and t are rotation and translation transforms
which relate the world coordinates to the camera coordiantes,
referred to as the camera extrinsics.

For our use case, without loss of generality, we can assume
that the model plane in our image lies with Z = 0 in the
world coordinates, and so we can simplify the right hand side
of Equation 1:

sx̄ = K
[
r1 r2 r3 t

]
X
Y
0
1

 = K
[
r1 r2 t

] XY
1

where ri denotes the ith column of R. From here on out X
refers to the simplified 3D world point with Z = 0. We define
the homography between the model plane and the image as
follows:

H = K
[
r1 r2 t

]
(2)

An homography can be estimated directly from an image of
a known planar pattern, using the model points of the planar
pattern and the image points detected from the image. From

here the goal of camera calibration is extract the camera
intrinsics K from the homographies for a given set of images.

B. Homography Estimation

The homography estimation from a set of image points
and corresponding is performed by minimizing the following
equation ∑

j

||xj − x̂j ||2

where
x̂j =

1

h̄⊤
3 Xj

[
h̄⊤
1 Xj

h̄⊤
2 Xj

]
with h̄i, the ith row of H [1]. This is done using the
Levenberg-Marquardt algorithm, which is performed in code
using optimize.least_squares from scipy, with the
parameter method=’lm’.

An initial guess is obtained by solving[
X̄⊤ 0⊤ −uX̄⊤

0⊤ X̄⊤ −uX̄⊤

]
a = 0

with a =
(
h̄⊤
1 , h̄

⊤
2 , h̄

⊤
3

)⊤
using singular value decomposition.

The above method yields poor results as the inputs aren’t
normalized, and so a x and y values are normalized using a
normalization matrix on the homogeneous coordinates.

II. CAMERA CALIBRATION METHOD

This section details the method for recovering camera
intrinsic and distortion parameters from a set of N model
points and a set of M images each with N images points.

A. Camera Intrinsics

The camera intrinsics matrix K consists of 5 free variables:
the coordinates of the principle point, denoted (u0, v0), the
scale factors on the u and v axes, denoted α and β respectively,
and the skew factor, denoted γ [1].

K =

α γ u0

0 β v0
0 0 1

 (3)

Applying the knowledge that r1 and r2 are orthonormal, we
get

h⊤
1 K

−⊤K−1h2 = 0 (4)

h⊤
1 K

−⊤K−1h1 = h⊤
2 K

−⊤K−1h2 (5)

where hi denotes the ith column of H [1].

We can then get a closed form solution for K. Let

B = K−⊤K−1 ≡

B11 B12 B13

B12 B22 B23

B13 B23 B33

 (6)

B is a symmetric matrix, and thus is defined by the 6D vector

b =
[
B11 B12 B22 B13 B23 B33

]
(7)

which gives

h⊤
i Bhj = v⊤ijb (8)

with

vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2,

hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]

[1]. Finally, this can be rewritten in in the form[
v⊤
12

(v11 − v⊤
22

]
b = 0 (9)

Stacking this for M images of the model plane we get

Vb = 0 (10)

where V is a 2M × 6 matrix [1]. We can solve for b using
singular value decomposition, finding the right singular vector
of V associated with the smallest singular value. Once b is
estimated, K can be recovered trivially [1].

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

α =
√
λ/B11

β =
√

λB11/(B11B22 −B2
12)

γ = −B12α
2β/λ

u0 = γv0/β −B13α
2/λ

(11)

B. Camera Extrinsics

Once the camera intrinsics are estimated, the extrinsics can
easily be recovered. From (2), we have

r1 = λK−1h1

r2 = λK−1h2

r3 = r1 × r2

t = λK−1h3

with λ = 1/||K−1h1|| = 1/||K−1h2||.
Due to noise, R will not satisfy the properties of a real

rotation matrix, and so a real rotation matrix is derived using
singular value decomposition. SVD yields U, S, and V, and
Rreal = UV.

C. Radial Distortion

The process up to this point has assumed that the camera
has no distortion, but this is not accurate. Most cameras exhibit
large distortion, particularly radial distortion. For our purposes,
only the first two terms of distortion are considered.

Let x = (x, y) be the ideal (without distortion) normalized
image coordinates, and x̃ = (x̃, ỹ) be the distorted image
coordinates. The ideal points are the projection of the model
points according to the pinhole model.

r2 = x2 + y2

D = k1r
2 + k2r

4

x̃ = x(1 +D)

(12)

where k1 and k2 are the coefficients of the radial distortion.
This follows as the center of the radial distortion is coincident
with the principal point (u0, v0).

These distortion equations are applied to the model points
while in normalized coordinate space, and then the distorted
model points are mapped into the pixel space. This simplifies
the calculation of the distortion.

This gives the final form for our projection from model
points Xj to pixel coordinates uj . Let

R =
[
r1 r2 t

]
Then,

xj =
1

R̄⊤
3 Xj

[
R̄⊤

1 Xj

R̄⊤
2 Xj

]
(13)

we apply the distortion to get x̃j , and finally in pixel coordi-
nates

uj =

[
K̄1x̃j

K̄2x̃j

]
(14)

where K̄i is the ith row of K [2].
While closed form methods exist to approximate k1 and k2,

k1 = k2 = 0 is assumed, as it is sufficiently accurate to permit
the optimization to converge.

D. Projection Error

In order to optimize the defined parameters, an error func-
tion must be defined. Recall that K is the camera intrinsic
matrix, k1 and k2 distortion parameters, Ri and ti are the
rotation and translations extrinsics for the ith image, and Xj

is the jth model point. [2].

Error =

M∑
i=1

N∑
j=1

||xij − P (K, k1, k2,Ri, ti,Xj)||2 (15)

where P is the projection of a point according to Equations
13 and 14.

E. Parameterizing the extrinsic rotation matrices

Each rotation matrix Ri consists of 9 elements, but a
rotation matrix only has 3 degrees of freedom. To address
this issue, the Rodrigues representation of a rotation matrix is
used, which is denoted as ρ, and is a 3D vector.

F. Optimization

In order to improve our estimation of the camera intrinsics
we would like to optimize our total projection error. As the
problem is non-linear, iterative methods must be used, in
our case the Levenberg-Marquardt algorithm. To apply this
optimization we must combine parameters for all images into
one vector P .

a = (α, β, γ, u0, v0, k1, k2)

wi = (ρi,x, ρi,y, ρi,z, ti,x, ti,y, ti,z)

P = (a⊤|w⊤
1 | . . . |w⊤

M)⊤

a contains all the camera parameters, and wi the trans-
formation data associated with the ith image. P is a
(7 + 6M) vector, and it is then optimized with respect
to the error previously defined. This is performed using
optimize.least_squares from scipy, with the pa-
rameter method=’lm’.

III. RESULTS

The results of the outlined method were applied to a test
set of 13 images. This section explains how the technique was
applied to the images, as well as presents the resulting camera
intrinsic and errors.

A. Input Data

The input data for the method described is a set of model
points, (N × 2), and a set of image points, (M × N × 2).
To get this data, a grid size of (9, 6) was chosen, and model
points were generated using the a grid tile size of 1 (this choice
is arbitrary). Finally, cv2.findChessboardCorners was
used to find the (9, 6) grid of image points for each image,
as shown in Figure 1. The output for all images is shown in
Appendix A.

Fig. 1: Checkerboard Corners

Image Mean Geometric Error
Unoptimized Optimized

0 0.81 0.537
1 1.916 0.53
2 2.678 0.789
3 1.341 0.782
4 5.272 0.792
5 1.878 0.541
6 1.163 0.423
7 1.959 0.473
8 2.109 0.704
9 2.366 0.926

10 1.164 0.649
11 1.217 0.805
12 1.705 0.587

Mean 1.968 0.657

TABLE I: Reprojection Error

B. Camera Intrinsics

The calibration matrix for the dataset, before and after
optimization, are as follows:

K =

2052.789 −0.37 763.06
0 2036.635 1352.614
0 0 1

Kopt =

2045.677 −1.594 759.524
0 2037.36 1345.386
0 0 1

and the distortion parameters:

k =
[
0 0

]
kopt =

[
0.172 −0.737

]
. The error for each image as well as overall is shown in Table
I. The final rectified image with re-projected corners plotted
is shown in Figure 2. The output for all images is shown in
Appendix B.

Fig. 2: Rectified Image with Re-projected Corners

REFERENCES

[1] Z. Zhang, “A flexible new technique for camera cal-
ibration,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 11, pp. 1330–1334,
2000. DOI: 10.1109/34.888718.

[2] W. Burger, “Zhang’s camera calibration algorithm:
In-depth tutorial and implementation,” University of
Applied Sciences Upper Austria, School of Infor-
matics, Communications and Media, Dept. of Digi-
tal Media, Hagenberg, Austria, Tech. Rep. HGB16-
05, May 2016. [Online]. Available: https : / / www .
researchgate . net / publication / 303233579 Zhang % E2 %
80%99%20s Camera Calibration Algorithm InDepth
Tutorial and Implementation.

APPENDIX A
CORNER DETECTION

Fig. 3: Image 0: Checkerboard Corners

Fig. 4: Image 1: Checkerboard Corners

Fig. 5: Image 2: Checkerboard Corners

Fig. 6: Image 3: Checkerboard Corners

Fig. 7: Image 4: Checkerboard Corners

Fig. 8: Image 5: Checkerboard Corners

Fig. 9: Image 6: Checkerboard Corners

Fig. 10: Image 7: Checkerboard Corners

Fig. 11: Image 8: Checkerboard Corners

Fig. 12: Image 9: Checkerboard Corners

Fig. 13: Image 10: Checkerboard Corners

Fig. 14: Image 11: Checkerboard Corners

Fig. 15: Image 12: Checkerboard Corners

APPENDIX B
RE-PROJECTION

Fig. 16: Image 0: Rectified and with Reprojected Corners

Fig. 17: Image 1: Rectified and with Reprojected Corners

Fig. 18: Image 2: Rectified and with Reprojected Corners

Fig. 19: Image 3: Rectified and with Reprojected Corners

Fig. 20: Image 4: Rectified and with Reprojected Corners

Fig. 21: Image 5: Rectified and with Reprojected Corners

Fig. 22: Image 6: Rectified and with Reprojected Corners

Fig. 23: Image 7: Rectified and with Reprojected Corners

Fig. 24: Image 8: Rectified and with Reprojected Corners

Fig. 25: Image 9: Rectified and with Reprojected Corners

Fig. 26: Image 10: Rectified and with Reprojected Corners

Fig. 27: Image 11: Rectified and with Reprojected Corners

Fig. 28: Image 12: Rectified and with Reprojected Corners

