Computer Vision Home Work 1 - AutoCalib

Butchi Venkatesh Adari
Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts 01609
Email: badari@wpi.edu

Abstract—This paper details the software implementation of a
camera calibration algorithm. The utilized method is described in
”A flexible new technique for camera calibration” by Z. Zhang.

I. INTRODUCTION

We follow the method detailed by Zhengyou Zhang to
estimate the parameters of camera calibration matrix. This
method is robust and quite efficient. The data utilized are
images taken using a Google Pixel XL camera with focus
lock enabled. The subject of the images is the checkerboard
pattern of a chessboard. The vertices of the pattern serve as
our calibration points basis.

The localization of objects in 3D space viewed by a
camera has many important applications in computer vision
and robotics engineering. This requires two reference frame
transformations, first to transform between the 2D pixel coor-
dinates on the image sensor plane to the camera’s 3D frame,
then from the camera frame to the 3D world coordinates.
The matrices representing these transforms are known as the
camera intrinsic and extrinsic matrices.

A. Data Preparation and Solving for Calibration Matrix

Using cv2.findChessboardCorners, the vertices of the
chessboard are found for all greyscaled images in our dataset.
Using the method discussed in the paper by Zhangyou Zhang,
initial rotation (R) and translation (t) matrices calculated.
We can also initially assume that the camera has minimal
distortion and we can assume that

= [1].

After calculation, the initial K matrix is shown in Fig 1.
This is an approximate solution which can be further
refined/fine-tuned.

B. Non-linear Geometric Error Minimization

Now that we have the initial estimates of K, R, t, and k
matrices, we can try to minimize the geometric error. We can
use scipy.optimize to minimize using the loss function as given
below:

After optimizing, the optimized K matrix and the optimized
distortion matrix k are shown in Fig 1.

The reprojection error before optimizing is 0.697577 and
the reprojection error after optimizing is 0.6833688.

N M
> ey — @i (K, Riyti, X5, k) |
i=1 j=1

2

The outputs generated from the code are as follows. The A
matrix from the analytical computation is:

Fig. 1: The output of the reprojection

II. OuTpPUT

The checkerboard image after rectification using the matri-
ces calculated above is shown in Fig. 1

M
Z H"Ei,j - "ii,j (K’ Ri’tivXjak) H
=1

N
=1

Fig. 2: Loss function for optimization

III. RESULTS

In the Images the blue circles indicates the corners before
reprojected and the red circles indiates after reprojection.



Fig. 3: Image 1 After calibration Fig. 4: Image 2 After calibration



Fig. 5: Image 3 After calibration Fig. 6: Image 4 After calibration



Fig. 7: Image 5 After calibration Fig. 8: Image 6 After calibration



Fig. 9: Image 7 After calibration Fig. 10: Image 8 After calibration



Fig. 11: Image 9 After calibration Fig. 12: Image 10 After calibration



Fig. 13: Image 11 After calibration Fig. 14: Image 12 After calibration



Fig. 15: Image 13 After calibration



