
HW0: Alohomora
Venkateshkrishna

Worcester Polytechnic Institute
Worcester, MA 01609

Email: vparsuram@wpi.edu

Abstract—The assignment has 2 phases. Phase 1 is the imple-
mentation of simplified version of the pb, an algorithm that finds
boundaries by examining brightness, color and texture of images
across multiple scales. While Phase 2 involves the implementation
of various neural networks to classify the images in the CIFAR-10
dataset.

I. PHASE 1: SHAKE MY BOUNDARY

The goal of this Phase is to develop a simplifies version
of the Pb (Probability of boundary) algorithm. It works
by calculating the per pixel probability of a boundary by
considering the texture, color discontinuities and intensity
discontinuities. There are 4 major steps in the algorithm:

1) Generation of filter banks: Oriented DoG, LM and Gabor
filters

2) Generation of Texton, Brightness and Color maps
3) Generation of Texton, Brightness and Color gradient

maps
4) Boundary detection by combing the gradient maps with

the outputs of Canny and Sobel

A. Generation of Filter Banks

In the first step of the pb lite boundary detection process,
we start by running the image through some filter sets.
We’re going to have three different sets of filters for this.
These are the Oriented DoG filters, Leung-Malik Filters and
Gabor Filters. Once we’ve done that, we create a texton map,
showing the texture in the image by grouping together the
filter responses.

1) Oriented DoG filters: The Differnce of Gaussian
filters are created by convolving a simple Sobel filter and a
Gaussian kernel and then rotating the result. 2 scales with
16 orientations ranging from 0 to 360 degrees were used to
obtain 32 filters. A Gaussian kernels of size 7 and standard
deviation 0.7 and 1 were chosen to generate the filter bank.
The generated filter bank can be seen in Fig 1.

2) Leung-Malik Filters: The Leung-Malik filters or LM
filters are a set of multi scale, multi orientation filter bank
with 48 filters. It consists of first and second order derivatives
of Gaussians at 6 orientations and 3 scales making a total of
36; 8 Laplacian of Gaussian (LOG) filters; and 4 Gaussians.
2 Versions of this filter are generated LM small and LM
large. LM small filters are generated using σ = [1,

√
2,2,2

√
2]

and LM large filter are generated using σ = [
√
2,2,2

√
2,4].

Fig. 1: Oriented Difference of Gaussian filter bank

Fig. 2: LM small filter bank

The first and second derivatives of Gaussian occur at the
first three scales with σx = σ and σy = 3σx, whereas the
Gaussians occur at all the basic scales, and the Laplacian of
Gaussian (LOG) occurs at σ and 3σ. A kernel size of 21
was used to generate these filters. The generated LM small
and LM large filter banks can be seen in Fig 2 and Fig 3
respectively.

3) Gabor filters: Gabor filters are designed based on how
the human visual system works. It is formed by a Gausian
Kernel modulated by a sinusoidal wave. A filter size of 21
was used to generate this filter bank at scales= [4,5,6,8,10].
The generated filter bank can be seen in Fig 4.



Fig. 3: LM large filter bank

Fig. 4: Gabor filter bank

B. Texton, Brigtness and Color Map

1) Texton Map: To generate a texton maps, all the 168
filters generated are convolved over the image. This reuslts
in a vector of filter responses centered around each pixel.
The collection of N-dimensional filter responses can be
thought of as encoding texture characteristics. To simplify
this representation, we replace each N-dimensional vector
with a discrete Texton ID. This simplification involves
clustering the filter responses at every pixel in the image
into K Textons using K-means clustering. Consequently, each
pixel is represented by a one-dimensional, discrete cluster
ID instead of a vector with high-dimensional, real-valued
filter responses. The outcome is presented as a single-channel
image with values ranging from 1 to K. A K value of 64 was
chosen for K mean clustering.

Fig. 5: Texton, Brightness, and Color map for Image 1

Fig. 6: Texton, Brightness, and Color map for Image 2

2) Brightness Map: The notion of the brightness map
involves capturing variations in brightness within the image.
Once more, we employ k-means clustering to group the
brightness values (equivalent to the grayscale representation
of the color image) into 16 clusters.

3) Color Map: The concept of the color map is used
to capture the color changes or chrominance content in the
image. Here, again we cluster the RGB color values using
kmeans clustering into 16 clusters.

The generated Texton, Brightness and Color map for the 10
test images can be seen in Fig 5 through Fig 14.

C. Texton, Brightness and Color Gradient

The Texture, Brightness, and Color gradients (Tg, Bg, Cg)
are computed to analyze the changes in the distributions of
Texture, Brightness, and Color maps at each pixel. These
gradients are determined by convolving half-disk masks of
various orientations and scales with the previously generated
maps. The use of half-disk masks facilitates the evaluation
of gradient maps at different scales and angles, allowing
us to capture variations in texture, brightness, and color
across different orientations and scales. The half disks masks
generated can be seen in Fig 15. This approach aids in

Fig. 7: Texton, Brightness, and Color map for Image 3

Fig. 8: Texton, Brightness, and Color map for Image 4



Fig. 9: Texton, Brightness, and Color map for Image 5

Fig. 10: Texton, Brightness, and Color map for Image 6

Fig. 11: Texton, Brightness, and Color map for Image 7

Fig. 12: Texton, Brightness, and Color map for Image 8

Fig. 13: Texton, Brightness, and Color map for Image 9

Fig. 14: Texton, Brightness, and Color map for Image 10

Fig. 15: Half disk masks

Fig. 16: Chi-square distance formula

calculating the chi-square distance between the filtered left
and right parts around each image pixel. The chi-square
distance, commonly employed for comparing histograms,
quantifies the similarity or dissimilarity between the filtered
left and right portions of each image pixel. The chi-square
distance formula can be seen in Fig 16.

The generated Texton, Brightness and Color gradients for
the 10 test images can be seen in Fig 17 through Fig 26.

Fig. 17: Texton, Brightness, and Color gradients for Image 1

Fig. 18: Texton, Brightness, and Color gradients for Image 2



Fig. 19: Texton, Brightness, and Color gradients for Image 3

Fig. 20: Texton, Brightness, and Color gradients for Image 4

Fig. 21: Texton, Brightness, and Color gradients for Image 5

Fig. 22: Texton, Brightness, and Color gradients for Image 6

Fig. 23: Texton, Brightness, and Color gradients for Image 7

Fig. 24: Texton, Brightness, and Color gradients for Image 8

Fig. 25: Texton, Brightness, and Color gradients for Image 9

Fig. 26: Texton, Brightness, and Color gradients for Image 10



Fig. 27: Canny, Sobel and Pb lite outputs for Image 1

Fig. 28: Canny, Sobel and Pb lite outputs for Image 2

D. Pb lite Output

The final output of the pb lite algorithm is achieved by
averaging the gradients of Tg, Bg, and Cg. In a similar manner,
a weighted average is done for the Sobel and Canny baselines,
and the resulting map is element-wise multiplied with the
previous average. This process yields a comprehensive map
that incorporates Texton, brightness, and color features, along
with the features present in the Canny and Sobel baselines.
w1=0.5 and w2 =0.5 were chosen for this operation.This is
done using the equation:

PbEdges =
(Tg + Bg + Cg)

3
⊙ (w1 · cannyPb+w2 · sobelPb)

A comparison between the Canny, Sobel and Pb lite outputs
can be seen in Fig 27 through Fig 36.

Fig. 29: Canny, Sobel, and Pb lite outputs for Image 3

Fig. 30: Canny, Sobel, and Pb lite outputs for Image 4

Fig. 31: Canny, Sobel, and Pb lite outputs for Image 5

Fig. 32: Canny, Sobel, and Pb lite outputs for Image 6

Fig. 33: Canny, Sobel, and Pb lite outputs for Image 7

Fig. 34: Canny, Sobel, and Pb lite outputs for Image 8

Fig. 35: Canny, Sobel, and Pb lite outputs for Image 9

Fig. 36: Canny, Sobel, and Pb lite outputs for Image 10



E. Conclusion

Upon comparing with the baselines, it becomes evident that
Pb lite has successfully eliminated numerous incorrect edges
identified by Canny, while also incorporating many edges
overlooked by Sobel. The results strongly suggest that Pb lite
outperforms the standalone Canny and Sobel algorithms.



II. PHASE 2: DEEP DIVE ON DEEP LEARNING

The goal of this phase is to implement and train various
neural networks to classify the images of the CIFAR-10
dataset. The CIFAR-10 dataset consists of 60,000 (50,000
training and 10,000 testing) 32x32 images belonging to 10
classes. The neural networks implemented are:

1) A Simple CNN
2) An Improved CNN
3) ResNet
4) ResNeXt
5) DenseNet
These networks were further compared on various perfor-

mance criteria such as accuracy, speed, loss and number of
parameters.

A. A simple CNN

A simple convolution neural network with 2 convolution
layers and 2 fully connected layers was implemented. The
outputs of the convolution layers were activated using RelU
activation then passed through max pooling layers. After
passing through both the convolution layers the outputs were
reshaped and passed through the 2 fully connected layers.
The second fully connected layer outputs 10 values. The
predicted class is obtained by taking argmax of these 10
values. The architecture of this network can be seen in Fig 37.

The parameters used for training this network are:
• Learning rate=0.001
• Number of epochs= 20
• Batch Size= 32
• Optimizer = Adam
• Loss function = Cross Entropy loss

The accuracy and loss per epoch for the training and test
set can be seen in Fig 38. While the confusion matrix for the
training and test set can be seen in Fig 39 and 40 respectively.

The Model has an 545098 trainable parameters. It has
inference time of 0.00023 seconds per image and has an
accuracy of 68.89% on the test set and an accuracy of 81.2%
on the train set.

Fig. 37: Architecture of Simple CNN



Fig. 38: Accuracy and Loss per Epoch for the Simple CNN

Fig. 39: Train set Confusion Matrix for the Simple CNN

Fig. 40: Test set Confusion Matrix for the Simple CNN



B. An Improved CNN

The simple CNN was improved by adding another
convolution layer bringing the number of convolution layers
to 3 and by normalizing the output of the convolution layers
by passing it through a batch normalization layer before
sending it to the ReLU activation function. The architecture
of this network can be seen in Fig 41.

The parameters used for training this network are:
• Learning rate=0.001
• Number of epochs= 20
• Batch Size= 32
• Optimizer = Adam
• Loss function = Cross Entropy loss

The accuracy and loss per epoch for the training and test
set can be seen in Fig 42. While the confusion matrix for the
training and test set can be seen in Fig 43 and 44 respectively.

The Model has an 357258 trainable parameters. It has
inference time of 0.0004 seconds per image and has an
accuracy of 76.58% on the test set and an accuracy of 96.0%
on the train set.

Fig. 41: Architecture of Improved CNN



Fig. 42: Accuracy and Loss per Epoch for the Improved CNN

Fig. 43: Train set Confusion Matrix for the Improved CNN

Fig. 44: Test set Confusion Matrix for the Improved CNN



C. ResNet

The main innovation of ResNet lies in the use of
residual blocks, which contain shortcut connections or skip
connections. These connections allow the information from
the input of a certain layer to be directly propagated to the
output of a deeper layer. The fundamental idea is that instead
of trying to learn the mapping directly, the network learns
the residual or the difference between the input and the output.

The residual blocks mitigate the vanishing gradient
problem, which is a common issue in training deep networks.
As networks get deeper, it becomes more challenging
for the gradients to flow back through the layers during
backpropagation, leading to slow or stalled learning. The
skip connections in ResNet help gradients to easily propagate
through the network, enabling the training of very deep
models.

The ResNet-50 model was implemented which has a total
of 50 layers.The architecture of this network can be seen in
Fig 45.

The parameters used for training this network are:
• Learning rate=0.001
• Number of epochs= 20
• Batch Size= 32
• Optimizer = Adam
• Loss function = Cross Entropy loss

The accuracy and loss per epoch for the training and test
set can be seen in Fig 46. While the confusion matrix for the
training and test set can be seen in Fig 47 and 48 respectively.

The Model has an 13970442 trainable parameters. It has
inference time of 0.005 seconds per image and has an accuracy
of 39.68% on the test set and an accuracy of 42.32% on the
train set.

Fig. 45: Architecture of ResNet



Fig. 46: Accuracy and Loss per Epoch for ResNet

Fig. 47: Train set Confusion Matrix for ResNet

Fig. 48: Test set Confusion Matrix for ResNet



Fig. 49: Architecture of ResNeXt block

D. ResNeXt

The key innovation in ResNeXt is the introduction of a
new block called a ”cardinality bottleneck,” which replaces
the traditional bottleneck structure found in ResNet. The
cardinality bottleneck involves grouping the channels within
a layer into multiple independent paths or ”cardinalities.”
This allows ResNeXt to capture a diverse set of features
across different paths, promoting richer representations and
improving model generalization.

The cardinality concept provides a flexible way to scale
up the network’s capacity without significantly increasing the
number of parameters, making ResNeXt more computationally
efficient compared to traditional approaches.
The ResNet model created earlier was modified to create the
ResNeXt model. Each ResNet block was replaced with a
ResNeXt block. Initially a cardinality of 32 was chosen but
this led to extremely high computation time. To reduce the
computation time a cardinality of 8 was chosen along with a
bottleneck width of 14.

The architecture of one of the ResNext blocks can be seen
in Fig 49.

The parameters used for training this network are:
• Learning rate=0.001
• Number of epochs= 20
• Batch Size= 32
• Optimizer = Adam
• Loss function = Cross Entropy loss

The accuracy and loss per epoch for the training and test
set can be seen in Fig 50. While the confusion matrix for the
training and test set can be seen in Fig 51 and 52 respectively.

The Model has an 3780202 trainable parameters. It has
inference time of 0.0243 seconds per image and has an
accuracy of 28.39% on the test set and an accuracy of 29.482%
on the train set.

Fig. 50: Accuracy and Loss per Epoch for ResNeXt



Fig. 51: Train set Confusion Matrix for ResNeXt

Fig. 52: Test set Confusion Matrix for ResNeXt



Fig. 53: Architecture of DenseNet

E. DenseNet

In a DenseNet, each layer receives direct input from all
preceding layers in the block, and its own feature maps
are passed to all subsequent layers. This dense connectivity
fosters feature reuse, allowing the network to efficiently
leverage information from different scales and abstraction
levels. Additionally, DenseNet’s dense connectivity addresses
the vanishing gradient problem by providing shorter paths for
gradients to propagate during training.

DenseNet architectures are characterized by dense blocks,
transition layers, and a global average pooling layer at the
end.
The DenseNet-121 model was implemented which has a
total of 121 layers. A growth rate of 16 was chosen. The
architecture of this network can be seen in Fig 53.

The parameters used for training this network are:
• Learning rate=0.001
• Number of epochs= 20
• Batch Size= 32
• Optimizer = Adam
• Loss function = Cross Entropy loss

The accuracy and loss per epoch for the training and test
set can be seen in Fig 38. While the confusion matrix for the
training and test set can be seen in Fig 54 and 55 respectively.

The Model has an 1739448 trainable parameters. It has
inference time of 0.0116 seconds per image and has an
accuracy of 85.52% on the test set and an accuracy of 98.388%
on the train set.



Fig. 54: Accuracy and Loss per Epoch for DenseNet

Fig. 55: Train set Confusion Matrix for DenseNet

Fig. 56: Test set Confusion Matrix for DenseNet



F. Discussion and Conclusion

Table 1 provides a comprehensive overview of how the
various models perform across multiple criteria.

TABLE I: Comparison of Different Models

Model Number of Parameters Train Accuracy (%) Test Accuracy (%) Inference Time

Simple CNN 545,098 81.2 68.89 0.00023
Improved CNN 357,258 96 76.58 0.0004
ResNet 13,970,442 42.32 39.68 0.005
ResNext 3,780,202 29.48 28.39 0.0243
DenseNet 1,739,448 98.388 85.52 0.0116

From the data it is evident that DenseNet performs the best,
followed by the improved CNN and the Simple CNN. It is
also worth noting that ResNet and ResNext do not perform
very well, infact even worse than the Simple CNN. This is
possibly due to the architecture chosen, ResNet-50 is a fairly
large model that requires a lot of training. Perhaps changing
the architecture slightly or by tuning the hyper parameters a
bit more the performance of these models can be improved.
ResNext performs even worse than ResNet possibly due to
the low cardinality chosen due to hardware limitations. The
impressive performance of the DenseNet shows how well these
models can perform and highlights the advantage of using skip
connections.

REFERENCES

[1] Pb lite: link
[2] ResNet: link
[3] ResNeXt: link
[4] DenseNet: link

https://rbe549.github.io/spring2024/hw/hw0/#starter
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1608.06993

	PHASE 1: SHAKE MY BOUNDARY
	Generation of Filter Banks
	Oriented DoG filters
	Leung-Malik Filters
	Gabor filters

	Texton, Brigtness and Color Map
	Texton Map
	Brightness Map
	Color Map

	Texton, Brightness and Color Gradient
	Pb lite Output
	Conclusion

	Phase 2: Deep Dive on Deep Learning
	A simple CNN
	An Improved CNN
	ResNet
	ResNeXt
	DenseNet
	Discussion and Conclusion

	References

