
Homework 0 - Alohomora
Manoj Velmurugan
Robotics Engineering

Worcester Polytechnic Institute
Email: v.manoj1996@gmail.com

Abstract—In this study, we employed the Probability of
Boundaries algorithm for edge detection, showcasing superior
performance compared to traditional Canny and Sobel filters.
Furthermore, the latter part of this project involved the training
of deep neural networks to classify images within the CIFAR10
dataset. Decent accuracy of edge detection and image classifica-
tion is demonstrated. Additionally, performance, accuracy and
other factors were critically analysed and experimented in this
work.

One late day was used!

I. PHASE 1: SHAKE MY BOUNDARY

Boundary detection in computer vision is a challenging
problem, especially from a single image, as it may necessitate
object-specific reasoning. One approach is to identify edges
by detecting intensity discontinuities, which serve as poten-
tial indicators of transitions into background. Classical edge
detection algorithms including the Canny and Sobel filters,
use some form of gradient of intensity in images to detect
the edges. Although they are computationally efficient, they
can detect too many false positive edges. Instead of looking
at just the change in intensities, once can make use of color
and texture information to detect edges more robustly. In this
project, we obtain a probability metric that quantifies whether
a pixel is an edge or not. We multiply the probability with the
canny and/or sobel edges to make a more robust edge detection
algorithm.

A. Texture Clustering

The initial step in the PB Lite boundary detection pipeline
involves filtering the image with three sets of filter banks.
Subsequently, the filter responses are utilized to generate a
texton map (denoted as T), capturing texture information
through clustering. This filtering process plays a pivotal role
in measuring texture properties and aggregating regional
texture and brightness distributions.

Three types of filters are used to extract the textures from the
images. They are Oriented DoG filters, Leung-Malik Filters,
and Gabor filters. Oriented DoG filters (figure 1) capture
the direction in which intensity changes. Leung-Malik Filters
captures the direction (gradient), double derivative/ laplacian
of the smoothed image and the brightness at differnt scales as
illustrated in figure 2. Gabor filters mimic how humans see
texture. They are formed by modulating a Gaussian kernal
with a sine wave as shown in figure 3.
These filters capture too many information from the input
image. Finally all we need is a single number/index encoding

the texture information. This is done by clustering the available
texture data spanning over N dimensions (equal to the number
of filters used) using KMeans algorithm. We reduce our texture
information down to 64 numbers assigned to each pixel by
doing so.

B. Color Clustering

The color map concept captures color changes in an image
by clustering color values using k-means clustering, consid-
ering RGB. 3 Dimensions (RGB) varying from 0-255 gets
reduced to 0-15 while doing so. A single index gets assigned
to each pixel clustering the image to regions of identical
color. Figure 4 illustrates colormap for the given set of sample
images.

C. Intensity Clustering

The brightness map concept involves capturing brightness
changes by clustering grayscale equivalent values using k-
means clustering. Effectively a number 0-15 is assigned to
each pixel in the image once the clustering is done. Figure 4
illustrates intensity map for the given set of sample images.
Color images were converted to intensity images using NTSC
conversion formula which takes human color perception into
account.

D. Gradient of Texture, Color, Intensity

The edge information is effectively encoded in the gradient
of the texture, color and intensity maps. Since convolution
operation is more effective than for loops, we use a convo-
lutions kernel at different scales to perform this operation
similar to the previous sections. The kernels are half disks
as shown in figure 5. Any pixel with high difference between
complementary filter operations must have strong change in
features and thereby it must be an edge. Here χ2 distance is
used to compare the two filter operations.
To avoid recomputing, g-h and g+h are computed by combin-
ing the complementary set of filters into a single operation.
For more information, please refer to the attached code. The
gradients of texture, color and intensity obtained for each K
values were added together to obtain the texture, color and
intensity gradients as shown in figure 6.
Since we treat these gradients as probability, I scaled them
between 0 and 1.



Fig. 1. Oriented DoG filters

Fig. 2. Leung-Malik Filters



Fig. 3. Gabor Filters

E. Edge Detection

The provided canny and sobel filters were combined into
one image in a complementary fashion and then multiplied
with the normalized gradient of features to obtain the final set
of edges as shown in figure 7.
Further, to improve the contrast and make it a binary image
similar to the ground truth, the edges (Pb, Canny, Sobel) were
threshold-ed as shown in figure 8.

F. Analysis and Key Challenges

• Tuning When I used different weights for Texture,
Brightness and Color gradients, the resulting edges were
inconsistent. As seen in figure 6, if texture works well
for one image, color gradient works even better for a
different image. So finally brightness, color and texture
gradients were given similar weights.

• Performance KMeans clustering proved to have the
biggest impact on performance in this work. A couple
of techiques suggested by KMeans documentation was
adopted to improve the same. Init method was changed
to ”k-means++” and the algorithm was changed to elkan.

• Edge Detection Accuracy Sobel filter leaves out im-
portant edges, while canny detector had detected too
many edges. Pb detector maintains a balance between
the two while suppressing edges in regions without much

Fig. 4. Original Image, Texture, Brightness, Color Maps (Left to Right)

features . As shown in figure 7 and figure 8, the detector
performed better than canny and sobel filters.

• Color Map The choice of color map makes a big dif-
ference in seeing the contrast in monochrome/grayscale
images. Jet proved to have better contrast as seen in figure
7

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

A. Problem Statement

Devise a Deep Neural Network to classify images on
CIFAR10 Dataset.

B. Train your first neural network and Resnet architecture

1) Architecture: Resnet based architecture with six resnet
layers was arbitrarily used for this work as shown in figure 9.
After convolutional layers, the output is flattened and sent to
3 fully connected layers.

2) Training Process and Hyper Parameters: The loss func-
tion was chosen as Cross Entropy as its usually used for
classification problems. Each epoch traverses over all the
training batches and thereby the entire training set. Every



Fig. 5. Half Disk Mask

Fig. 6. Original Image, Texture, Brightness, Color Gradients (Left to Right)

Learning Rate 1e-3
Batch Size 4096

Parameter Count 0.326M
Optimizer Adam

Loss function Cross Entropy Loss
Train Epochs 100

TABLE I
BASELINE HYPER PARAMETERS

epoch, training loss, testing loss, training accuracy and testing
accuracy were logged. Inputs were pre-normalized by the
given training pipeline. Check point files were stored during
every epoch and the one with best accuracy was chosen. Since
the input image sizes were quite small and the machine had
24 GB VRAM, Batch size was increased from 32 to 4096. A
complete list of training parameters can be seen in table I

3) Results and Observations:: During the training process,
the training loss kept consistently reducing over epochs as
shown in figure 12. Training accuracy kept going up as shown
in figure 10. But the test accuracy started dropping after 17th
epoch when the model started overfitting as seen in figure 11.
The 17th epoch model was chosen to evaluate the confusion
matrix (figure 13). Test confusion matrix has higher values
along the diagonal and lower off-diagonal elements indicating



Fig. 7. Edges (Original, Canny, Sobel, Pb, Ground truth - left to right)

good testing accuracy. The testing accuracy is at 48.16% for
the baseline implementation for the entire test-set. As expected
train confusion matrix has high values on diagonal elements
(figure 14)

C. Improving Accuracy of your neural network

1) Increasing the layer count: Instead of using 6 Resnet
blocks, 11 Resnet blocks were used in this experiment. Addi-
tionally, fully connected layer count was increased to 4 from
3. This increased the model parameter count to 305M. Other
parameters were not changed.
Train accuracy of 94% and test accuracy of 48% was obtained
in this case. Even with a massive model, these was no increase
in test accuracy.

2) Dropout layers: Now dropout layers were added to
improve the generalisation of the network. These were added
to the baseline network. With this change, the test accuracy
also consistently increased (figure 15). I was able to achieve
a max test accuracy of 49.23%.

3) Analysis and comparison across experiments:

• As illustrated in table II, 48% accuracy was obtained
using vanilla Resnet framework.

Fig. 8. Binary Edges (Original, Canny, Sobel, Pb, Ground truth - left to right)

Metric Baseline Improved 1 Improved 2
Architecture Resnet6 Resnet11 Resnet6
Layer Count 6 11 6

Parameter Count 0.326M 305M 0.326M
BatchNorm Yes Yes Yes

DropOut No No Yes
Test Accuracy 48.5% 48% 49.2%

TABLE II
CIFAR10 NETWORK EXPERIMENTS

• Increasing the network size blindly does not result in
increased accuracy.

• Introducing dropout seems to make the training general-
ize better as seen in figure 15.

• Increasing the batchsize, seems to increase GPU mem-
ory but also increase the speed of training via massive
parallelism.

III. CONCLUSION

As illustrated above, edge detection was performed us-
ing the probability of boundaries algorithm. The algorithm
achieved better performance than canny and sobel filters.
Additionally in the second half of this work, deep neural
networks were trained to classify images in CIFAR10 dataset.



Fig. 9. Baseline - Resnet architecture

Fig. 10. Baseline - Train epoch-accuracy vs epoch count

Fig. 11. Baseline - Test epoch-accuracy vs epoch count

Fig. 12. Baseline - Train epoch-loss vs epoch count

Fig. 13. Baseline - Test Confusion Matrix

Fig. 14. Baseline - Train Confusion Matrix

Fig. 15. Improved 2 - Testing accuracy over epochs


