
Computer Vision - Homework 0 - Alohomora
Muhammad Sultan

Robotics Engineering
msultan@wpi.edu

Used one late day for this assignment

I. PHASE 1: SHAKE MY BOUNDARY

In Phase 1, our goal was to implement a simplified version
of the Probability of Boundary (pb) algorithm called pb lite.
This algorithm computes the probability of a pixel being a part
of a boundary between two object, hence the name. Classical
edge detection algorithms like Canny and Sobel only use the
gradients of intensity values, however, pb uses discontinuities
in texture, brightness, and color of the image as well. The
steps in the implementation of pb lite in this homework are
generating filter banks, generating texton maps, color maps
and brightness maps, generating gradient maps, and lastly
combining gradient maps with canny and sobel baselines to
generate final edges.

A. Step 1: Generating Filter Banks
A total of three filter banks were generated, namely, oriented

Derivative of Gaussian (DoG) filter bank, Leung-Malik (LM)
filter bank (both Small and Large), and Gabor filter bank.

The DoG filters were obtained by convolving a Gaussian
kernel with a sobel operator to get approximations of the
partial derivatives of the Gaussian kernel with respect to x
and y. These partial derivatives were than combined to get
a Derivative of Gaussian filter. This filter was then rotated
through different angles to generate more filters for the filter
bank. This bank is shown in Fig 1.

The small and large LM banks were made using the
same algorithm but different scales. The LM bank has four
different kinds of filters. The first kind is just the DoG filters
but with standard deviation in the y-direction three times
more than in the x-direction. The second type of filters are
the second order derivative of Gaussian filters, which are
obtained by convolving the first order partial derivatives with
the sobel kernels again. The third type are simple Gaussian
filters, and the forth type are Laplacian of Gaussian filters
(LOG). LOG filters are obtained by convolving a gaussian
filter with a Laplacian kernel which gives an approximation
of the Laplacian when convolved with. LM filters are shown
in Fig 2.

Gabor filters are just gaussian filters modulated by a
sinosoidal wave. These filters are shown in Fig 3.

Fig. 1: Oriented Derivative of Gaussian Filter Bank

Fig. 2: Leung-Malik filter bank (Upper half is LM Small and
lower half is LM Large

Fig. 3: Gabor filter bank

Fig. 4: Half-disk mask pairs

B. Step 2: Generating Texton, Brightness, and Color Maps
In this step, we first compute the texton maps for each

image. To do this we start by applying each filter generated in
the previous step to an image separately and then combining
the filtered images into one. This results in an mxnxN
matrix, each element of which is an N-dimensional vector
corresponding to a single pixel. K-means clustering is then
applied to this matrix to compute the Texton map. K-means
clustering replaces each N-dimensional vector with a discrete
texton ID so the final image is a single channel image with
values ranging from 1 to K. The suggested value of 64 was
chosen for K.



The Brightness Maps are computed by converting the orig-
inal image to grey-scale and performing K-means clustering
on it.

The Color Maps are computed by performing K-means
clustering on the original images themselves. For both Color
and Brightness maps a value of 16 is chosen for K. These
maps are shown in Figures 5 - 14 (Left: Texton Map, Right:
Brightness Map, Bottom: Color Map).

Fig. 5: Image 1: Texton, Brightness and Color Map

Fig. 6: Image 2: Texton, Brightness and Color Map

Fig. 7: Image 3: Texton, Brightness and Color Map

Fig. 8: Image 4: Texton, Brightness and Color Map

Fig. 9: Image 5: Texton, Brightness and Color Map

Fig. 10: Image 6: Texton, Brightness and Color Map



Fig. 11: Image 7: Texton, Brightness and Color Map

Fig. 12: Image 8: Texton, Brightness and Color Map

Fig. 13: Image 9: Texton, Brightness and Color Map

Fig. 14: Image 10: Texton, Brightness and Color Map

C. Step 3: Generating Texton, Brightness, and Color Gradient
Maps

The gradient maps are computed using the Texton, Bright-
ness, and Color maps obtained in step 2. For this, we first
generate half-disk masks, which we use to calculate chi-square
distances (χ2) for different orientations and scales of the half-
disk masks (shown in Fig 4). These (χ2) distances are then
aggregated together to get the gradient map of the input (any of
the three maps). These gradient maps are shown in Figures 15
- 24 (Left: Texton Gradient Map, Right: Brightness Gradient
Map, Bottom: Color Gradient Map).

Fig. 15: Image 1: Texton, Brightness and Color Map Gradients



Fig. 16: Image 2: Texton, Brightness and Color Map Gradients

Fig. 17: Image 3: Texton, Brightness and Color Map Gradients

Fig. 18: Image 4: Texton, Brightness and Color Map Gradients

Fig. 19: Image 5: Texton, Brightness and Color Map Gradients

Fig. 20: Image 6: Texton, Brightness and Color Map Gradients

Fig. 21: Image 7: Texton, Brightness and Color Map Gradients



Fig. 22: Image 8: Texton, Brightness and Color Map Gradients

Fig. 23: Image 9: Texton, Brightness and Color Map Gradients

Fig. 24: Image 10: Texton, Brightness and Color Map Gradi-
ents

D. Step 4: Edge Detection

The final step is to combine the three gradient maps by
averaging them together and computing the Hadamard product
with a weighted sum of the canny and sobel baseline images.
This gives us the final pb lite output images. The formula used
is

PbEdges =
Tg +Bg + Cg

3
⊙(w1 ∗cannyPb+w2 ∗sobelPb)

. I chose w1 as 0.8 and w2 as 0.2. These images are shown in
Figures 15 - 34 (Left: Canny Baseline, Middle: Sobel Baseline,
Right: Pb-lite result)

Fig. 25: Image 1: Canny, Sobel and Pb-lite

Fig. 26: Image 2: Canny, Sobel and Pb-lite

Fig. 27: Image 3: Canny, Sobel and Pb-lite

Fig. 28: Image 4: Canny, Sobel and Pb-lite

Fig. 29: Image 5: Canny, Sobel and Pb-lite

Fig. 30: Image 6: Canny, Sobel and Pb-lite

Fig. 31: Image 7: Canny, Sobel and Pb-lite



Fig. 32: Image 8: Canny, Sobel and Pb-lite

Fig. 33: Image 9: Canny, Sobel and Pb-lite

Fig. 34: Image 10: Canny, Sobel and Pb-lite

E. Analysis

As apparent from the final results, the pb-lite algorithm
brought out a lot of the edges that were not detected in the
canny or sobel baselines. However, in my implementation,
it seems that the false positives have not been decreased.
Theoretically, pb-lite should also reduce false positives from
the images to only have important lines. I suspect this is
due to sub-optimal parameters used during the algorithm like
filter bank size, filter size, filter orientations, filter scales, etc.
However, we can still see that in the pb-lite results, important
edges have not been ignored. Aside from my implementation,
PbLite is excellent on discerning the main object which is
subject to detection from the background, hence it is better
than canny in that regard. When comapred to sobel, it does
not miss out on edges of the object like sobel does. So, it is
a best of both worlds in a sense.

II. PHASE 2 - DEEP DIVE ON DEEP LEARNING

In phase 2, we have implemented 4 different types of neural
networks on the CIPHAR-10 dataset given to us and compared
their results. The models include a basic CNN, a ResNet, a
ResNext, and a DenseNet architecture.

A. Basic CNN

For the basic CNN, no pre-processing was done on the
pictures before training. I implemented three convolutional
layers. For each convolutional layer, I further applied ReLU
activation to their output and then pass them through a Batch

normalization layer. Finally, I reshaped the output of the third
convolutional layer and passed it into 2 fully connected layers,
one after the other. The Model architecture is shown in Fig ??.

Fig. 35: Basic CNN: Architecture

This model was trained using a batch size of 32 over
16 epochs. The number of parameters of this model were
1147914. The CNN gave 97% accuracy on the training set,
and only 61% accuracy on the test set, which highlights an
over-fitting problem. The plots of accuracy and loss vs epochs
are shown in Fig 59. The plot of test accuracy vs epochs
is shown in Fig 60. The confusion matrices for the test and
training set are shown in Fig 61 and Fig 62, respectively.

Fig. 36: Basic CNN: Plot of Training accuracy and loss over
each epoch



Fig. 37: Basic CNN: Plot of Test accuracy over each epoch

Fig. 38: Basic CNN: Confusing matrix for training data

Fig. 39: Basic CNN: Confusing matrix for training data

This same model was attempted to be improved (to Basic
CNN 2.0), by adding pre-processing of the images by applying
transformations, including normalization, to the images. The
number of epochs was kept 16 and batch size was change to
64. However, this actually resulted in a drop in accuracy over
both training and testing set. The results for this model are
shown in Figures 40 - 43.

Fig. 40: Basic CNN 2.0: Plot of Training accuracy and loss
over each epoch

Fig. 41: Basic CNN 2.0: Plot of Test accuracy over each epoch

Fig. 42: Basic CNN 2.0: Confusing matrix for training data

Fig. 43: Basic CNN 2.0: Confusing matrix for training data

Overall, the results who that the model is overfitting, since
it is excellent at classifiying training images but not as good
at testing images.



B. ResNet

My ResNet implementation is very basic (for faster com-
putation). It consists of a convolutional layer, followed by
three layers, each having two Residual Blocks in them. Each
Residual Block has two convolutional layers with batch nor-
malization and ReLU activation. Whenever the stride of the
residual block is not 1 or the number of input and output
channels of the block are different, it adds a downsampled
input (downsampling done on the input that the block got) to
the output of the block. This is the residual connection, and
it helps address the vanishing gradient problem. The model
architecture is shown in Figures 44 and 45.

Fig. 44: ResNet: Model Architecture

Fig. 45: ResNet: Residual Block

This model was trained for 16 epochs with a batch size of
64. The number of parameter of this model are 342026. The
results are not very good for this model. It has an even more
severe overfitting problem than the Basic CNN. The training
accuracy is 95% but the testing accuracy is only 38%. These
results are shown in Figures 46 - 49.

Fig. 46: ResNet: Plot of Training accuracy and loss over each
epoch

Fig. 47: ResNet: Plot of Test accuracy over each epoch

Fig. 48: ResNet: Confusing matrix for training data

Fig. 49: ResNet: Confusing matrix for training data

C. ResNext

For the ResNext, I just modified my ResNet model to make
it fit the description of a ResNext (added cardinality), and
added a few extra layers to the residual block. Cardinality is



basically the number of parallel paths in a Residual Block.
Combining information from multiple pathways enables di-
verse feature learning. Hence, it is an improvememnt on
ResNet.

The cardinality was set to 32, the number of epochs were
16 and the batch size was 64. The number of parameters of
this model are 2438036. The model architecture is shown in
Figures 50 and 51.

Fig. 50: ResNext: Model Architecture

Fig. 51: ResNext: Residual Block

The results for this model actually got worse, even though
they were meant to improve the results of the ResNet. It has a
training accuracy of 98% but a testing accuracy of only 25%.
The results are shown in Figures 52 - 55.

Fig. 52: ResNext: Plot of Training accuracy and loss over each
epoch

Fig. 53: ResNext: Plot of Test accuracy over each epoch

Fig. 54: ResNext: Confusing matrix for training data

Fig. 55: ResNext: Confusing matrix for training data

D. DenseNet

The final model implemented was DenseNet, which has
two types of blocks, a dense block and a tranisition block. In
Dense blocks each layer receives input from all previous layer.
These Dense blocks increase the number of channels making
the model too complex. The Transition blocks are there to
control the complexity of the model by reducing the number
of channels by applying a 1 x 1 convolution. The architecture
of the model is shown in Figures 56, 57 and 58.



Fig. 56: DenseNet: Model Architecture

Fig. 57: DenseNet: Dense Block

Fig. 58: DenseNet: Transiton Block

The number of parameters for this model are 35661. This
model was trained using a a growth rate (number of channels
added to the input of a subsequent layer in a dense block) of
12 , batch size 0f 64, and 16 epochs. The results for DenseNet
are not good either, as it suffers even more from overfitting. It
has a training accuracy of 82% but a testing accuracy of only
25%. These results are shown in Figures .

Fig. 59: DenseNet: Plot of Training accuracy and loss over
each epoch

Fig. 60: DenseNet: Plot of Test accuracy over each epoch

Fig. 61: DenseNet: Confusing matrix for training data

Fig. 62: DenseNet: Confusing matrix for training data

E. Analysis

The final comparison of each model is shown in the Table
I.



Model Train Accuracy Test Accuracy Number of parameters
Basic CNN 97% 61% 1147914

Basic CNN 2.0 92% 56% 1147914
ResNet 95% 38% 342026

ResNeXt 98% 25% 2438026
DenseNet 82% 25% 35661

TABLE I: Accuracy comparison of Neural Nets

Overall, with my implementation the Basic CNN performed
the best even tough it should have performed the worst. From
the results, we can see that as we increase the complexity of
the model, the testing accuracy decreases, which makes sense
(in a way). Models that are more complex can fit the training
data very closely, as compared to simpler models which could
result in even more overfitting. Another possible reason for
this could be sub-optimal hyper-parameters. It seems like these
models need to be tuned a lot better than I have attempted to.
With these things in mind, the performance of these models
can be improved significantly. Model architectures also need to
be further improved and could be the reason this is happening
in the first place.


