
Homework 0: Alohomora
Kushagra Srivastava

Email: ksrivastava1@wpi.edu
Using 1 Late Day

Abstract—This report comprises of 2 sections: edge detection
and neural network implementations. Section 1 of the report
describes the implementation of a simplified probability of
boundary (pb) algorithm that leverages filter banks to enhance
edge detection outputs of classical algorithms (canny and sobel).
Section 2 of this report describes the implementation of 4 neural
network architectures: CNN, ResNet, ResNeXT, and DenseNet for
classifying images in the CIFAR-10 dataset. A thorough analysis
of the implementation and training details for these networks is
provided.

I. EDGE DETECTION: SHAKE MY BOUNDARY

This section describes the implementation of a simplified
version of the pb algorithm [1] by leveraging texture, bright-
ness, and color information encoded in an image. Figure 1
describes the pb algorithm. This algorithm can be summarized
in 4 steps.

1) Generation of 4 Filter banks: (i) Orientated Difference
of Gaussian (DoG) filters, Leung-Malik (LM) filters, and
Gabor filters. (Section I-A)

2) Computing texture, brightness, and color maps. (Section
I-B)

3) Using the aforementioned maps to compute the texture,
brightness, and color gradients of each pixel in an image.
(Section I-C)

4) Combining the gradient information with sobel and
canny edge detection outputs to obtain the final result.
(Section I-D)

A. Filter Bank Generation

1) Orientation DoG filters: A DoG filter is generated
by convolving a Gaussian kernel with the Sobel Filter (see
Equation 1). The generated DoG filter was rotated across 16
directions, each direction obtained through uniform partition-
ing of the angular range between 0 and 360 degrees. The

Fig. 1: Simplified implementation of Probability of boundary
(pb)

Fig. 2: Kernel size was 17 while scales for the Gaussian kernel
were 1 and 2

Gaussian kernel was generated for two scales. Thus, the total
count of the DoG filters was 32. Refer to Figure 2 for more
details.

S =

 1 2 1
0 0 0
−1 −2 −1

 (1)

2) LM filters: LM filters consist of first and second-order
derivatives of Gaussian (at 6 orientations and 3 scales), 8
Laplacian of Gaussian (LOG) filters, and 4 Gaussian filters
(total 48 filters). Derivatives of Gaussian filters are obtained by
convolving a Gaussian kernel with the sobel filter (see Equa-
tion 1) k times, where k represents the order of the Gaussian
derivative. These filters are generated at an elongation factor
of 3 (σx = σ and σy = 3σ. LOG filters are obtained by
convolving a Gaussian filter with the Laplacian filter given
in Equation 2. Depending on the scales used, the LM filters
are further categorized into LM small (LML) and LM large
(LML). For further implementation details, refer to figure 3

L =

0 1 0
1 −4 1
0 1 0

 (2)

3) Gabor Filters: A Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave1. The Gabor
filter bank is shown in Figure 4

B. Texture, Brightness, and Color Maps

1For more details please refer to https://en.wikipedia.org/wiki/Gabor filter

https://en.wikipedia.org/wiki/Gabor_filter


LMS filters LML filters

Fig. 3: Scales used for LMS =
[
1

√
2 2 2

√
2
]

and LML
=
[√

2 2 2
√
2 4

]
. The derivatives of the Gaussian filters

were generated for the first three scales (with σx = σ and
σy = 3σ) while LOG filters were generated for all scales
(σ) and 3 times the scales (3σ). The Gaussian kernels were
generated at all the scales.

Fig. 4: Scales used for the Gabor filter bank were 5, 7, 9, 11,
and 13. λ was set to 5, ψ was set to 0, and γ was 1. The
obtained filter was rotated between 0 and π at an interval of
π/8. A total of 40 filters were generated.

1) Texture Maps: After generating the filter banks, each
of these filters is applied to the images. This will form
a vector of filter responses for each pixel in the image.
These responses capture the texture properties of a small
neighborhood around the pixel. The next step is to cluster
pixels as per the filter responses. For this operation, KMeans
clustering is used which replaces the N-dimensional (N being
the total number of filters) vector to a single value belonging
to the set {1, 2, 3, . . . ,K}. For texture maps, K was chosen
to be 64.

2) Brightness and Color Maps: A similar idea is followed
to cluster the pixels as per their brightness and RGB color
values. For brightness maps, the grayscale equivalent of the
image while for color maps, the RGB image is used directly.
For both maps, K was set to 16. The texture, brightness, and
color maps are illustrated in figure 5.

C. Texture, Brightness, and Color Gradients

To understand the change of texture, color, and brightness
in a neighborhood around a pixel, the corresponding gradients
are calculated. To find these gradients for each of the maps

Fig. 5: Texture, brightness, and color maps



Fig. 6: Texture, brightness, and color gradients

Fig. 7: Left and right half-disc masks generated for 3 radii
values and 8 orientations.

discussed above, binary half-disc masks in pairs (left and right)
are used. See figure 7 for an illustration. These masks calculate
the X 2 (chi-square) distances through filtering. Computing X 2

is much faster than looping over each pixel neighborhood and
aggregating counts for histograms. If the distributions obtained
by convolving the images with the left and right disc masks
are similar, then the gradient is small while for dissimilar
distributions, the gradients will be large. The different scales
and angles using which the masks were created, encodes
how quickly the distributions change at the corresponding
scales and angles. Mathematically, X 2 can be calculated using
equation 3 where g and h are histograms with the same binning
scheme and K is the number of bins. Figure 6 shows an
illustration of the gradients obtained.

X 2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi
(3)

D. Pb Output Generation

For calculating the final output using the texture (Tg),
brightness(Bg), color(Cg) gradients and the corresponding
canny (C) and sobel (C) outputs, equation 4 is used. The
weights were determined empirically. Results are illustrated
in 8.

O =
Tg + Bg + CG

3
× (0.1S + 0.9C) (4)

E. Analysis

The simplified pb algorithm was able to reject the false
positives detected by the canny edge detection algorithm while
it also rejected some useful information from the sobel algo-
rithm. Since the choice, orientation, size, scales, and number of
filter banks are hyperparameters, better results can be achieved
by tuning them. This flexibility of the pb algorithm gives it
an edge over the canny and sobel methods.

II. NEURAL NETWORK IMPLEMENTATION

this section reports the implementation details of various
architectures that were eventually trained to classify CIFAR-10
dataset images. In particular, the following architectures were
implemented. The final layer of each neural network consists
of 10 neurons, and it is followed by a softmax activation
function. The softmax function assigns probabilities to each
of the 10 classes, representing the likelihood of the input
belonging to each class.



Fig. 8: Sobel, Canny, and PB outputs

Fig. 9: Network Architecture for Basic CNN

1) Basic Convolutional Neural Network
2) Convolutional Neural Network
3) ResNet
4) ResNeXt
5) DenseNet

A. Basic Convolutional Neural Network

The basic network comprises a Convolutional-ReLU-
Convolutional-ReLU layer followed by 2 fully-connected lay-
ers. Adam optimizer, learning rate of 0.0001, and a batch
size of 64 were used and the network was trained for 10
epochs. Please refer to Fig 9 for architecture, Fig 10 for testing
confusion matrix, Fig 11 training confusion matrix, Fig 12 for
training loss, Fig 13 for training accuracy, Fig 14 for testing
loss, and Fig 15 for testing accuracy.

B. Convolutional Neural Network

This network comprises two sequential layers followed by 2
fully-connected layers. The sequential layer comprises a con-
volutional layer, followed by a batch normalization layer, and
a ReLU activation function layer. Adam optimizer, learning
rate of 0.0001, and a batch size of 64 were used and the
network was trained for 10 epochs. Please refer to Fig 16
for architecture, Fig 17 for testing confusion matrix, Fig 18
training confusion matrix, Fig 19 for training loss, Fig 20
for accuracy, Fig 21 for testing loss, and Fig 22 for testing
accuracy.



Fig. 10: Confusion Matrix for Basic CNN

Fig. 11: Training Confusion Matrix for Basic CNN

Fig. 12: Training Loss vs Epochs for Basic Net

Fig. 13: Training Accuracy vs Epochs for BasicNet

Fig. 14: Testing Loss vs Epochs for Basic Net

Fig. 15: Testing Accuracy vs Epochs for BasicNet

C. ResNet

For the scope of this assignment, a ResNet [2] comprising
two ResNet blocks followed by two fully-connected layers
was implemented. Each block is a standard implementation
of a residual block. The first block has a projection layer
that transforms the 3-channel input into a high-dimensional
feature vector. Adam optimizer, learning rate of 0.0001, and
a batch size of 64 were used and the network was trained for
10 epochs. Please refer to Fig 23 for architecture, Fig 24 for
testing confusion matrix, Fig 25 training confusion matrix, Fig
26 for training loss and Fig 27 for training accuracy, Fig 35
for testing loss, and Fig 36 for testing accuracy.

D. ResNeXt

A ResNeXt [3] comprising 4 standard ResNeXt blocks
was implemented followed by 1 fully-connected layer. The
cardinality, which defines the number of ”parallel paths” the
input data takes was set to 3. 2D Averaging pooling was used
to reduce the spatial dimensions before it was fed to the fully-
connected layer. Adam optimizer, learning rate of 0.0001, and
a batch size of 64 were used and the network was trained for
10 epochs. Please refer to Fig 30 for architecture, Fig 31 for
testing confusion matrix, Fig 32 training confusion matrix, Fig



Fig. 16: Network Architecture for CNN

Fig. 17: Confusion Matrix for CNN

Fig. 18: Training Confusion Matrix for CNN

Fig. 19: Training Loss vs Epochs for CNN

Fig. 20: Training Accuracy vs Epochs for CNN

Fig. 21: Testing Loss vs Epochs for CNN

Fig. 22: Testing Accuracy vs Epochs for CNN



Fig. 23: Network Architecture for ResNet

Fig. 24: Confusion Matrix for ResNet

33 for training loss, Fig 34 for training accuracy, Fig 28 for
testing loss, and Fig 28 for testing accuracy.

E. DenseNet

A DenseNet [4] comprising of a dense block, transition
layer, and 1 fully-connected layer was implemented. The input
was projected to 64 channels through a convolutional layer.
The dense block had 6 standard densenet layers while the
transition layer reduced the number of channels of the latent
vector. 2D averaging pooling was used to reduce the spatial
dimensions of the latent vector before it was fed to the fully-
connected layer. Adam optimizer, learning rate of 0.0001, and
a batch size of 64 were used and the network was trained for

Fig. 25: Training Confusion Matrix for ResNet

Fig. 26: Loss for ResNet

Fig. 27: Accuracy for ResNet

Fig. 28: Testing Loss vs Epochs for ResNet



Fig. 29: Testing Accuracy vs Epochs for ResNet

Fig. 30: Architecture for ResNeXt

10 epochs. Please refer to Fig 37 for architecture, Fig 38 for
testing confusion matrix, Fig 39 training confusion matrix, Fig
40 for training loss, Fig 41 for training accuracy, Fig 42 for
testing loss, and Fig 43 for testing accuracy.

F. Comparison

5 neural network architectures were implemented from
scratch out of which DenseNet performed the best. A detailed
analysis is documented in Table I. ResNeXt and ResNet
need hyperparameter tuning and more layers to boost their
performance. CNN improved the performance of Basic CNN
through the introduction of batchnorm layers.

Fig. 31: Confusion Matrix for ResNeXt

Fig. 32: Training Confusion Matrix for ResNeXt

Fig. 33: Training Loss vs Epochs for ResNeXt

Fig. 34: Training Accuracy vs Epochs for ResNeXT



Fig. 35: Testing Loss vs Epochs for ResNeXt

Fig. 36: Testing Accuracy vs Epochs for ResNeXT

REFERENCES

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation,” IEEE
transactions on pattern analysis and machine intelligence,
vol. 33, no. 5, pp. 898–916, 2010. 1

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. [Online]. Available: http://arxiv.
org/abs/1512.03385 5

[3] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He,
“Aggregated residual transformations for deep neural
networks,” CoRR, vol. abs/1611.05431, 2016. [Online].
Available: http://arxiv.org/abs/1611.05431 5

[4] G. Huang, Z. Liu, and K. Q. Weinberger,

Model Params Train Accuracy Test Accuracy Inference(ms)
Basic CNN 133,538 60.2% 56.13% 0.282

CNN 133,582 70.63 63.51% 0.341
ResNet 1,294,026 79.21% 67.5% 0.848

ResNeXt 15,018 52% 51.36 % 1.664
DenseNet 393,738 79.03% 69.7 % 1.551

TABLE I: Comparison of network performance on CIFAR-10
dataset

Fig. 37: Network Architecture for DenseNet

Fig. 38: Confusion Matrix for DenseNet

“Densely connected convolutional networks,” CoRR,
vol. abs/1608.06993, 2016. [Online]. Available:
http://arxiv.org/abs/1608.06993 7

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1608.06993


Fig. 39: Training Confusion Matrix for DenseNet

Fig. 40: Training Loss vs Epochs for DenseNet

Fig. 41: Training Accuracy vs Epochs for DenseNet

Fig. 42: Testing Loss vs Epochs for DenseNet

Fig. 43: Testing Accuracy vs Epochs for DenseNet


	Edge Detection: Shake my boundary
	Filter Bank Generation
	Orientation DoG filters
	LM filters
	Gabor Filters

	Texture, Brightness, and Color Maps
	Texture Maps
	Brightness and Color Maps

	Texture, Brightness, and Color Gradients
	Pb Output Generation
	Analysis

	Neural network Implementation
	Basic Convolutional Neural Network
	Convolutional Neural Network
	ResNet
	ResNeXt
	DenseNet
	Comparison


