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Abstract—This project Homework0, Alohomora has two
Phases. Phasel is to implement edge detection wusing
pb(probability of boundary) method, in which edge detection is
performed using change in texture, colour and brightness com-
ponents across multiple scales and orientations. The algorithm
performed pretty well in edge detection, however, it is detecting
edges of background objects as well. Phase2 is to desing and
implement Convolution Neural Network, ResNet, ResNext and
DenseNet using CIFAR-10 image dataset.

I. PHASE 1: SHAKE MY BOUNDARY

This phase involves series of operations to be performed in
order to achieve edge detection on input images. This involves
creating 3 different filter banks, namely Derivative of Gaussian
(DoG), Leung-Malik filters (LM filters) and Gabor Filters.
Filtering operation is performed in input images and further,
K-Means clustering is applied in order to generate texton map
, brightness and colour maps, which encode how much the
texture, brightness and color distributions are changing at a
pixel respectively. Subsequently, we are comparing texton,
brightness and color distributions with the chi-square (z?)
measure. The final step is to combine information from the
features with a baseline method (based on Sobel or Canny
edge detection or an average of both).

A. Designing Filter Banks

A filter bank is a set of band-pass filters designed to perform
operations such blurring, noise removal on input image so as
to achieve feature extractions. In this case, we are using 3
different filter banks, details are as follows.

1) Oriented DoG Bank: 1t is a collection of DoG filters
with multiple orienations and scales. Here, we have used 16
orientations between 0 to 360 and 2 scales [2,3]. Derivation of
Gaussian is implemented by convolving Gaussian filter with
Sobel Kernel. In total 32 filters are there in this bank.

Fig. 1. DOG filter

2) Leung-Malik filters (LM filters): This filter bank consists
of total 48 filters which involves first and second order deriva-
tives of Gaussians at 6 orientations and 3 scales making a total
of 36; 8 Laplacian of Gaussian (LOG) filters; and 4 Gaussians
filters. Further, we created 2 LM banks, LM-small with
o = [1,v/2,2,2v/2] and LM-large 0 = [v/2,2,2v/2,4].The
Gaussians occur at the four basic scales while the 8 LOG
filters occur at ¢ and 30. Kernel size we used is 49.



Fig. 2. LM-small filter bank

Fig. 3. LM-large filter bank

3) Gabor Filters: Gabor Filters are designed based on the
filters in the human visual system. A gabor filter is a gaussian
kernel function modulated by a sinusoidal plane wave. The
equation for a 2D Gabor filter in the spatial domain is given
by:
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Fig. 4. Gabor filter bank

B. Texton map

Applying a filter bank to an input image generates a vector
of filter responses for each pixel, centered on that pixel. The
distribution of these N-dimensional filter responses can be
considered as encoding texture properties. To simplify this
representation, the N-dimensional vector is substituted with a
texton ID. This simplification is accomplished by employing
the k-means clustering algorithm from Scikit-learn to cluster
filter responses at all pixels in the image into K textons.

Fig. 5. Texton map

C. Brightness map

The idea behind the brightness map is straightforward—it
involves capturing the variations in brightness within the
image. Once again, we employ k-means clustering on the



brightness values (equivalent to grayscale representation of
the color image), grouping them into a specified number of
clusters (optimal at 16 clusters, but feel free to explore other
values). The resulting clustered output is referred to as the
brightness map, denoted as B.

Fig. 6. Brightness map

D. Colour map

The idea behind the color map is to encapsulate the varia-
tions in color or chrominance within the image. Once again,
we utilize k-means clustering on the color values (assuming
three values per pixel for RGB color channels), and you have
the flexibility to explore alternative color spaces like YCbCr,
HSV, or Lab. The color values are grouped into a specified
number of clusters (16 clusters have proven effective, but
experimentation is encouraged). The resulting grouped output
is termed the color map, denoted as C. It’s worth noting that
you have the option to cluster each color channel separately,
providing room for experimentation with different methods.

Fig. 7. Colour map

E. Texture, Brightness and Color Gradients Tg ,Bg ,Cg

To calculate Tg, Bg, and Cg, it is necessary to compute
variations in values across various shapes and sizes. This

process can be efficiently accomplished by utilizing Half-disc
masks.
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Fig. 8. Half Disk Mask

F. Sobel and Canny baseline

The output images obtained from the Sobel and Canny
operations serve as the baselines. Our Pb-lite algorithm is then
compared to these baseline results.
G. Pb-Lite Algorithm

The performance of the Pb-lite algorithm in edge detection
is evidently strong. From a semantic perspective, Pb-lite
demonstrates the ability to detect edges that are meaningful.

H. Results

Sample input image is shown

Fig. 10. Result of Edge detection



Fig. 9. Input image

II. PHASE2: D EEP D IVE ON D EEP L EARNING

In addressing this problem, a basic convolutional neural
network (convnet) is constructed using PyTorch. The model
is trained and tested using images sourced from the CIFAR-
10 dataset. Subsequently, for the later stages of this problem, I
am implementing 2 additional neural network models: ResNet
ResNeXt.

III. DATA SET

The CIFAR-10 dataset comprises 60,000 32x32 images
distributed among 10 distinct classes, with 6,000 images per
class. Among these, 50,000 images are designated for training,
while the remaining 10,000 are allocated for testing. The
dataset demonstrates a balanced distribution across the various
classes.

A. Model the first neural network

As part of this section, I have build a 5 layer Convolution
Neural Network (CNN). First 2 layers are convolution layers
and remaining are linear layers. Its architecture is shown in
the figure 9. Total number of learnable parameters are 62,006.

CIFAR10Model (ImageClassificationBase):
__init  (self, InputSize, OutputSize):
super()._ init ()

.convl = nn.Conv2d(3,6,5)
.pool = nn.MaxPool2d(2,2)
.conv2 = nn.Conv2d(6,16,5)

.fcl = nn.Linear(16*5*5, 120)
.fc2 = nn.Linear(120,84)

.fc3 = nn.Linear(84,0utputSize)
forward(self, xb):

out .pool (F.reluf .convl(xb)))
out .pool(F.reluf .conv2(out)))
out = out.view(-1, 16*5%*5)

out F.relu( .fcl(out))

out F.relu( .fc2(out))

out .fe3(out)

return out

Fig. 11. CNN network
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Fig. 12. Training loss of CNN

Fig. 13. Training Confusion matrix of CNN
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Fig. 14. Testing Confusion matrix of CNN

tride = 1, padding = 1),

forward(self
residual =

X += residual

return out
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Fig. 16. ResNet Residual block

B. Designing ResNet
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Fig. 15. ResNet architecture Fig. 18. ResNet Testing Loss
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Fig. 19. ResNet Testing Confusion Matrix
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Fig. 20. ResNet Training Confusion Matrix g
C. Designing ResNext
As a part of this, I have built a ResNext with architecture 0 Step
as shown in figure 19 It has total 12 blocks and cardinality is 0 2 4 5 3 10 12 12
32. Total number of learnable parameters are 37,052,554.
Fig. 23. ResNext Testing Accuracy
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Fig. 21. ResNext architecture Fig. 24. ResNext Testing Loss
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Fig. 25. ResNext Testing Confusion Matrix
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D. Subsection Heading Here
Subsection text here.
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