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Abstract—The objective of the homework is to implement an
edge detection task using the classical pb (probability of bound-
ary) detection algorithm and an image classification task using a
deep learning approach. As a part of the classical approach, the
BSDS500 dataset has been passed through a filter bank consisting
of Oriented Derivatives of Gaussian (DoG) filters, Leung-Malik
filters, and Gabor filters. Further, each of these images has been
graded map and gradient features based on Texture, Brightness,
and Color properties. As a final step, each of the gradients of
images has been averaged out and combined with the Canny and
Sobel baselines. Image classification in the second phase has been
performed using a Basic Network, ResNet, ResNeXt, and Dense
Network architecture. Various hyperparameters such as learning
rate, and number of epochs have been varied to obtain test and
train accuracy and loss.

I. PHASE 1: SHAKE MY BOUNDARY

A. Filter Banks

1) Oriented DoG Filters: We will generate Derivatives of
Guassians at 12 orientations with two scales each scale having
different kernel sizes. Following is the flow of the algorithm:

• Get a 2D gaussian kernel using:

G =
1√
2πσ2

· exp
(
−x

2 + y2

2σ2

)
• Define Sobel operators

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

 1 2 1
0 0 0
−1 −2 −1


• Convolve Sobel operators and Gaussian kernel to generate

filters in X-Y directions

Gx = Sx ∗G

Gy = Sy ∗G

• Rotate the filters at given orientations

Goriented = Gx cos θ +Gy sin θ

Visualization of the filters is shown in Figure 1.

Fig. 1: Oriented DoG Filters

2) Leung-Malik Filters: Two types of Leung-Malik filters
have been generated: Leung-Malik Small and Leung-Malik
Large with In LM Small (LMS), the filters occur at basic
scales σ = {1,

√
2, 2, 2

√
2}. The first and second derivative

filters occur at the first three scales with an elongation factor
of 3, i.e.σx = σ & σy = 3σx. The Gaussians occur at the
four basic scales while the 8 LOG filters occur at σ and 3σ.
For LM Large (LML), the filters occur at the basic scales
σ = {

√
2, 2, 2

√
2, 4}. Following is the flow of the algorithm

to generate LM filters:
• Generate 1D Gaussian kernels in both X-Y directions.

G1D =
1√
2πσ2

· exp
(
− x2

2σ2

)
• Generate first order and second order derivates of the

Gaussian kernel

G′ = (− x

σ2
) ·G1D

G′′ = (
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σ4
− 1

σ2
) ·G′

• Get 2D Gaussian kernels as calculated for Oriented DoG
filters

• Generate Laplacians of Gaussains

LoG =
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πσ2
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σ4
− 1

σ2

)
exp
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2 + y2

2σ2

)
• Add all the filters to generate LM filter bank.

Visualization of filters is shown in Fig 2.
3) Gabor Filters: A gabor filter is a gaussian kernel func-

tion modulated by a sinusoidal plane wave.
• Generate Gabor filter using the following equation.
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(a) LM Large

(b) LM Small

Fig. 2: Leung-Malik Filter Bank

• A fixed value of λ = 7, ψ = 0 and γ = 1 has been used
to calculate the filters. The σ values have been varied
with {9, 11, 13, 15, 17}

• Visualization of Gabor filters is shown in Figure 3.

B. Feauture Maps
To generate , the Texture, Brightness, and Color properties

of the image are considered. Firstly, each image is converted
to grayscale and passed through the curated filter bank con-
sisting of Oriented DoG, Leung-Malik, and Gabor filters. The
resulting filtered images are collected as filter responses and
are reshaped to W × H × N where W is the width of the
image, H is the height of the image and N is the number of
filters. They are then clustered into a given number of clusters
at all pixels using the KMeans algorithm.

1) Texton Map: For generating texton maps, we will use
clusters = 64. See Fig. 5

2) Brightness Map: For generating texton maps, we will
use clusters = 16. See Fig. 6.

3) Color Map: For generating texton maps, we will use
clusters = 16. See Fig. 7

Fig. 3: Gabor Filters

Fig. 4: Input Images

C. Half Disc Masks

We will now generate Half-Disc Masks which are essen-
tially binary images where the semi-circular discs are oriented
at different angles. Every mask consists of two pairs of such
discs which are mirrored to each other. For visualization, see
Fig. 8.
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Fig. 5: Texton Maps

Fig. 6: Brightness Maps

D. Feauture Gradients
Now that we have the Half-Disc Masks, we will move

forward with generating gradients for each of the texture,
brightness, and color properties of the images. The procedure
for the same is as follows:

• Divide the half-disc masks into a set of left masks and

Fig. 7: Color Maps

Fig. 8: Half-Disc Masks

right masks.
• Perform convolution of maps obtained in the previous

section with the left and right masks individually.

gi = FeatureMap ∗ LeftMask

hi = FeautureMap ∗RightMask

• Calculate chi-square distance.

dst =
(gi − hi)

2

2(gi + hi + 1× 10−10)
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• Update chi-square values and return their mean as the
feature gradient

1) Texture Gradient: To generate texton gradients, we will
use the number of bins as 64 to calculate the chi-square
distance. See Fig. 9 for visualization of texture gradients.

Fig. 9: Texton Gradients

2) Brightness Gradient: To generate brightness gradients,
we will use the number of bins as 16 to calculate the chi-
square distance. See Fig. 10 for visualization of brightness
gradients.

3) Color Gradients: To generate color gradients, we will
use the number of bins as 16 to calculate the chi-square
distance. See Fig. 11 for visualization of color gradients.

E. Boundary Detection
We have been provided with Canny and Sobel results for

Image BOundary Detection. Out next and final step is to
combine the results of image gradients obtained previously
with the Canny and Sobel baseline to obtain the classical Pb-
Lite edge detection algorithm.

1) Canny Baseline: Image boundary detection using the
Canny Baseline has been shown in Fig 12.

2) Sobel Baseline: Image boundary detection using the
SObel Baseline has been shown in the following Fig 13.

3) Pb-Lite: The probability of Boundary (Pb) lite edge
detection can be computed by averaging out both the gradients
and Canny-Sobel baselines and then eventually multiplying
them.

pb lite = (0.33∗Tg+0.33∗Bg+0.33∗Cg)⊙(0.5∗(sPb+cPb))

Image boundary detection using the Pb-Lite algorithm has
been shown in Fig 14.

Fig. 10: Brightness Gradients

Fig. 11: Color Gradients

II. PHASE II: DEEP DIVE ON DEEP LEARNING

A. Training a Basic Network
1) Implementation: The task in this part is to train a

convolutional neural network on PyTorch for the task of
classification. The input is a single CIFAR-10 image and the
output is the probabilities of 10 classes. Following are the
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Fig. 12: Canny Baseline

Fig. 13: Sobel Baseline

details concerning the implementation of the network. See Fig
15. for the architecture of the Neural Network.

Image transformation used is:

• Random Horizontal Flip:

transforms.RandomHorizontalFlip()

Fig. 14: Pb-Lite

TABLE I: Basic Neural Network Configuration

Hyper Parameter Value

Optimizer SGD
Momentum 0.9

Learning Rate 0.001
Num of Epochs 20

Batch Size 50

• Random Rotation:

transforms.RandomRotation(10)

This rotates the image by a random angle in the range
[−10, 10] degrees.

• Convert to Tensor:

transforms.ToTensor()

This converts the image to a PyTorch tensor.
2) Evaluation: The train and test accuracy plots were

obtained during the training phase of the above network
configuration.
−Test Accuracy
−Train Accuracy
Loss over epochs has been plotted as shown in Fig 17.
−Test Loss
−Train Loss

TABLE II: Basic Network Model Test Output

Parameter Count 545,226
Training Accuracy 86.406%
Testing Accuracy 74.27%

5



Fig. 15: Basic CNN: SGD Optimizer

Fig. 16: Basic Network: Accuracy Plot

B. Improving Accuracy
1) Implementation: The previous network used Stochastic

Gradient Descent with Momentum as an optimizer which
updates the model parameters based on the negative gradient
descent of the loss concerning each parameter multiplied by a
fixed learning rate. On the other hand, AdamW has an adaptive
learning rate that updates model parameters based on historical
information. Moreover, we will also reduce the batch size
and number of epochs to avoid overfitting. Following is the
configuration of the IMPROVED Basic Neural Network. The

Fig. 17: Basic Network: Loss Plot

Basic Network Confusion Matrix of Testing Data

768 10 28 21 18 11 8 15 78 43
22 808 3 11 3 3 8 4 36 102
57 6 630 53 77 66 42 39 25 5
28 5 59 485 76 189 66 49 22 21
15 2 71 44 699 37 41 70 18 3
14 2 41 120 50 676 25 47 15 10
7 5 39 40 32 29 826 8 10 4
14 3 20 16 48 38 5 828 6 22
42 22 4 12 6 8 7 2 877 20
25 51 5 10 5 4 7 14 49 830


Basic Network Confusion Matrix of Training Data

4415 22 79 30 52 37 13 32 250 70
51 4521 5 12 7 9 8 14 108 265
199 7 4044 115 197 147 111 93 62 25
89 15 163 3383 183 667 182 163 71 84
49 2 217 122 4169 110 82 197 34 18
22 5 128 312 113 4129 78 148 36 29
24 10 130 105 84 42 4546 17 26 16
21 3 50 58 141 88 8 4574 19 38
85 26 12 12 6 13 6 9 4799 32
64 94 13 25 18 15 10 26 112 4623



architecture of the network has not been changed.
Image transformation used is:

transforms.ToTensor()

2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.
−Test Accuracy
−Train Accuracy
Loss over epochs has been plotted as shown in Fig 19.
−Test Loss
−Train Loss

TABLE III: Basic Neural Network Configuration (IM-
PROVED)

Parameters Value

Optimizer AdamW
Learning Rate 0.001

Num of Epochs 15
Batch Size 50
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Fig. 18: Basic Network Improved: Accuracy Plot

Fig. 19: Basic Network Improved: Loss Plot

Improved Network Confusion Matrix of testing data

678 24 69 26 24 14 17 14 100 34
18 828 12 7 3 7 11 5 34 75
57 7 557 67 99 77 72 38 21 5
18 21 74 475 76 198 75 27 15 21
24 5 69 76 647 43 60 60 13 3
21 8 45 152 50 609 46 56 7 6
5 7 40 51 44 30 801 12 8 2
9 3 37 46 82 70 13 720 8 12
40 46 21 17 9 10 12 7 822 16
27 113 13 26 4 15 16 17 33 736


Improved Network Confusion Matrix of training data

4701 14 68 28 27 19 9 9 114 11
4 4946 4 5 1 1 3 1 19 16
15 2 4768 34 68 34 54 11 12 2
9 5 32 4709 37 109 64 22 8 5
15 3 41 18 4849 22 26 19 4 3
2 3 25 33 19 4873 23 17 4 1
3 3 20 9 11 6 4944 1 2 1
4 5 14 21 61 27 12 4853 1 2
18 17 10 6 2 4 6 3 4927 7
10 82 7 8 1 5 11 6 27 4843



C. ResNet

1) Implementation: A Residual Network has been imple-
mented to further improve the overall performance of Image
Classification. ResNet uses a ”shortcut” which can be defined
as the identity of input. This identity bypasses one more layer
and helps overcome the issue of vanishing gradient. Vanishing
gradients are common as the depth of the network is increased.

TABLE IV: Improved Network Model Test Output

Parameter Count 545,226
Training Accuracy 96.826%
Testing Accuracy 68.73%

See Fig 20. for the architecture of the Neural Network.

TABLE V: Residual Network

Parameters Value

Optimizer AdamW
Learning Rate 0.001

Num of Epochs 20
Batch Size 200

Configuration [2, 2, 2]

Fig. 20: ResNet

2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.

Fig. 21: ResNet: Accuracy Plot

−Test Accuracy
−Train Accuracy
Loss over epochs has been plotted as shown in Fig 22.

Fig. 22: ResNet: Loss Plot

−Test Loss
−Train Loss

D. ResNeXt
1) Implementation: Residual NeXt implements a similar

”shortcut” but in a parallel network manner. It introduces the
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TABLE VI: ResNet Model Test Output

Parameter Count 697738
Training Accuracy 93.828 %
Testing Accuracy 74.19%

ResNet Confusion Matrix of Testing Data

828 7 32 27 11 6 8 11 45 25
17 826 5 8 1 4 13 3 24 99
77 2 579 68 73 55 91 40 6 9
28 6 44 565 54 154 76 49 13 11
34 1 55 57 676 41 56 69 6 5
14 3 32 182 37 622 37 60 5 8
7 6 25 65 40 18 825 6 6 2
23 2 15 40 38 56 5 806 1 14
77 16 9 20 3 2 7 6 835 25
36 41 6 17 1 8 7 16 11 857


ResNet Confusion Matrix of Training Data

4880 1 33 13 6 7 7 10 29 14
44 4761 1 13 0 2 15 2 16 146
161 1 4346 101 92 77 149 56 13 4
30 2 35 4429 67 224 138 51 12 12
80 0 64 97 4552 35 66 97 7 2
14 0 14 263 44 4541 47 74 1 2
6 3 19 52 23 18 4867 5 5 2
12 0 12 31 30 34 9 4867 0 5
127 12 4 19 2 4 5 2 4800 25
52 15 3 22 3 5 5 6 18 4871



concept of cardinality and employs multiple parallel paths in
skip connection.

See Fig 23. for the architecture of the Neural Network.
2) Evaluation: The train and test accuracy plots were

obtained during the training phase of the above network
configuration.

−Test Accuracy
−Train Accuracy
Loss over epochs has been plotted as shown in Fig 25.
−Test Loss
−Train Loss

E. DenseNet
DenseNet introduces the concept of feature reuse and dense

connectivity. It also provides output concatenation with the
input of subsequent layers. This provides a strong feature prop-
agation. The architecture and configuration used for DenseNet
has been provided below.

1) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.

TABLE VII: Residual Next Network

Parameters Value

Optimizer AdamW
Learning Rate 0.001

Num of Epochs 15
Batch Size 128

Configuration [3, 4, 6, 3]

Fig. 23: ResNeXt Archituecture

−Test Accuracy

−Train Accuracy

Loss over epochs has been plotted as shown in Fig 28.

−Test Loss

−Train Loss
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Fig. 24: ResNeXt: Accuracy Plot

Fig. 25: ResNeXt: Loss Plot

ResNeXt Confusion Matrix of Testing Data

749 13 62 40 19 7 10 6 79 15
13 856 8 7 2 9 6 2 29 68
52 3 582 117 101 53 66 8 15 3
16 7 52 646 65 120 56 11 15 12
13 6 74 77 663 45 68 44 6 4
9 1 27 286 60 568 18 22 7 2
6 3 35 103 36 20 780 3 10 4
19 8 30 87 83 72 9 683 1 8
59 22 18 21 4 8 8 1 844 15
33 72 8 34 7 6 6 3 25 806


ResNeXt Confusion Matrix of Training Data

4768 10 45 41 35 8 4 4 81 4
13 4909 2 6 1 0 3 2 25 39
55 1 4620 127 74 38 60 5 19 1
6 0 32 4803 43 55 43 6 6 6
5 0 46 84 4733 34 58 31 9 0
6 5 26 370 56 4478 32 19 5 3
6 7 29 92 33 16 4809 0 5 3
16 6 34 132 99 107 13 4571 12 10
24 7 11 21 6 3 3 1 4917 7
46 46 8 47 3 3 5 4 19 4819



F. Analysis
To conclude, AdamW showed a better performance

compared to Stochastic Gradient DenseNet with momentum
and hence AdamW was chosen for further training. Following
is the analysis of the four networks implemented:

• The basic network was able to achieve a higher training

TABLE VIII: ResNeXt Model Test Output

Parameter Count 23019146
Training Accuracy 94.854 %
Testing Accuracy 71.77 %

TABLE IX: Dense Network

Parameters Value

Optimizer AdamW
Learning Rate 0.001

Num of Epochs 15
Batch Size 64

Growth Rate 12
Depth 32

Reduction Factor 0.5

Fig. 26: DenseNet

accuracy but comparatively lower testing accuracy. A
possible cause for this can be overfitting where the model
learns efficiently but fails to generalize the new dataset.

• ResNet and ResNext showcase a drastic increase in train-
ing accuracy which means the model is very well efficient
in learning. However, the gap between training and testing
accuracy has reduced but still remains. Increasing the
depth and standardizing the data may help overcome the
gap.

• DenseNet performs exceptionally well in bridging the gap
between training and testing accuracy. This shows that it
is more like to generalize new data better as compared to
other networks. One thing to note here is the number
of epochs in training has been subsequently reduced

TABLE X: DenseNet Model Test Output

Parameter Count 105214
Training Accuracy 84.854 %
Testing Accuracy 78.23 %
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Fig. 27: DenseNet: Accuracy Plot

Fig. 28: DenseNet: Loss Plot

DenseNet Confusion Matrix of testing data

722 13 69 64 20 6 12 17 21 56
6 860 3 7 1 3 14 4 5 97
34 2 668 73 82 72 41 17 4 7
5 1 38 695 50 155 23 24 0 9
5 0 31 63 801 32 16 46 3 3
2 0 15 139 33 770 5 30 0 6
2 1 32 88 51 22 793 6 0 5
3 1 12 45 44 52 4 824 1 14
66 20 24 36 6 12 11 7 756 62
6 33 7 13 1 2 2 1 1 934


DenseNet Confusion Matrix of training data

3931 25 250 253 79 63 43 100 37 219
10 4550 10 28 3 11 28 8 10 342
106 2 3868 282 285 248 127 62 5 15
9 0 90 3987 138 616 68 70 2 20
20 0 79 212 4366 134 32 141 6 10
3 0 48 539 152 4124 26 101 0 7
4 1 126 286 245 119 4186 14 2 17
0 2 36 158 108 192 6 4473 5 20

248 65 75 198 16 31 86 16 3992 273
13 36 4 33 5 10 8 14 3 4874



due to computation limitations. Therefore, increasing the
number of epochs may help improve the accuracy. For
comparison, see below table.
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[1] P. Arbeláez, M. Maire, C. Fowlkes and J. Malik, ”Contour Detec-
tion and Hierarchical Image Segmentation,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp.
898-916, May 2011, doi: 10.1109/TPAMI.2010.161.

[2] J. Canny, ”A Computational Approach to Edge Detection,”
in IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:
10.1109/TPAMI.1986.4767851.

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual
Learning for Image Recognition. ArXiv. /abs/1512.03385

TABLE XI: Model Comparison

Metrics
Networks Parameter Count Training Accuracy Testing Accuracy

Basic Network 545,226 86.406% 74.27%
Improved Network 545,226 96.826% 68.73%

ResNet 697,738 93.828% 74.19%
ResNeXt 23,019,146 94.854% 71.77%
DenseNet 105,214 84.854% 78.23%

[4] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggre-
gated Residual Transformations for Deep Neural Networks. ArXiv.
/abs/1611.05431

[5] Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely Con-
nected Convolutional Networks. ArXiv. /abs/1608.06993

10


