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Abstract—The objective of the homework is to implement an
edge detection task using the classical pb (probability of bound-
ary) detection algorithm and an image classification task using a
deep learning approach. As a part of the classical approach, the
BSDS500 dataset has been passed through a filter bank consisting
of Oriented Derivatives of Gaussian (DoG) filters, Leung-Malik
filters, and Gabor filters. Further, each of these images has been
graded map and gradient features based on Texture, Brightness,
and Color properties. As a final step, each of the gradients of
images has been averaged out and combined with the Canny and
Sobel baselines. Image classification in the second phase has been
performed using a Basic Network, ResNet, ResNeXt, and Dense
Network architecture. Various hyperparameters such as learning
rate, and number of epochs have been varied to obtain test and
train accuracy and loss.

I. PHASE 1: SHAKE MY BOUNDARY

A. Filter Banks

1) Oriented DoG Filters: We will generate Derivatives of
Guassians at 12 orientations with two scales each scale having
different kernel sizes. Following is the flow of the algorithm:

o Get a 2D gaussian kernel using:

o= 1 1‘2 + y2
T Vo U\ 207
o Define Sobel operators
-1 0 1 1 2 1
Sz=1-2 0 Sy=10 0 0
-1 0 1 -1 -2 -1

« Convolve Sobel operators and Gaussian kernel to generate
filters in X-Y directions

Gy =5 %G
Gy=8,xG
« Rotate the filters at given orientations
Goriented = Gz cosf + Gy sin 0

Visualization of the filters is shown in Figure 1.
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Fig. 1: Oriented DoG Filters

2) Leung-Malik Filters: Two types of Leung-Malik filters
have been generated: Leung-Malik Small and Leung-Malik
Large with In LM Small (LMS), the filters occur at basic
scales 0 = {1,/2,2,2v/2}. The first and second derivative
filters occur at the first three scales with an elongation factor
of 3, ie0, = 0 & o, = 30,. The Gaussians occur at the
four basic scales while the 8 LOG filters occur at o and 3o.
For LM Large (LML), the filters occur at the basic scales
o = {V2,2,21/2,4}. Following is the flow of the algorithm
to generate LM filters:

e Generate 1D Gaussian kernels in both X-Y directions.
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e Generate first order and second order derivates of the
Gaussian kernel
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e Get 2D Gaussian kernels as calculated for Oriented DoG
filters
o Generate Laplacians of Gaussains

L (&+y* 1N o 2?4y
o2 ot o2 P 202

o Add all the filters to generate LM filter bank.
Visualization of filters is shown in Fig 2.
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3) Gabor Filters: A gabor filter is a gaussian kernel func-
tion modulated by a sinusoidal plane wave.

o Generate Gabor filter using the following equation.

av=e (-3 () e or () )
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Fig. 2: Leung-Malik Filter Bank

o A fixed value of A = 7,9 =0 and v = 1 has been used
to calculate the filters. The o values have been varied
with {9,11,13,15,17}

o Visualization of Gabor filters is shown in Figure 3.

B. Feauture Maps

To generate , the Texture, Brightness, and Color properties
of the image are considered. Firstly, each image is converted
to grayscale and passed through the curated filter bank con-
sisting of Oriented DoG, Leung-Malik, and Gabor filters. The
resulting filtered images are collected as filter responses and
are reshaped to W x H x N where W is the width of the
image, H is the height of the image and N is the number of
filters. They are then clustered into a given number of clusters
at all pixels using the KMeans algorithm.

1) Texton Map: For generating texton maps, we will use
clusters = 64. See Fig. 5

2) Brightness Map: For generating texton maps, we will
use clusters = 16. See Fig. 6.

3) Color Map: For generating texton maps, we will use
clusters = 16. See Fig. 7
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Fig. 3: Gabor Filters

Fig. 4: Input Images

C. Half Disc Masks

We will now generate Half-Disc Masks which are essen-
tially binary images where the semi-circular discs are oriented
at different angles. Every mask consists of two pairs of such
discs which are mirrored to each other. For visualization, see
Fig. 8.



Fig. 7: Color Maps
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Fig. 8: Half-Disc Masks

right masks.
o Perform convolution of maps obtained in the previous
section with the left and right masks individually.

Fig. 6: Brightness Maps

g; = FeatureMap x LeftMask
D. Feauture Gradients
Now that we have the Half-Disc Masks, we will move h; = FeautureMap * RightMask
forward with generating gradients for each of the texture,
brightness, and color properties of the images. The procedure

for the same is as follows: (gi — hi)2

e Divide the half-disc masks into a set of left masks and dst = 2(gi + hi + 1 x 10-19)

o Calculate chi-square distance.




o Update chi-square values and return their mean as the
feature gradient
1) Texture Gradient: To generate texton gradients, we will
use the number of bins as 64 to calculate the chi-square
distance. See Fig. 9 for visualization of texture gradients.

Fig. 9: Texton Gradients

2) Brightness Gradient: To generate brightness gradients,
we will use the number of bins as 16 to calculate the chi-
square distance. See Fig. 10 for visualization of brightness
gradients.

3) Color Gradients: To generate color gradients, we will
use the number of bins as 16 to calculate the chi-square
distance. See Fig. 11 for visualization of color gradients.

E. Boundary Detection

We have been provided with Canny and Sobel results for
Image BOundary Detection. Out next and final step is to
combine the results of image gradients obtained previously
with the Canny and Sobel baseline to obtain the classical Pb-
Lite edge detection algorithm.

1) Canny Baseline: Image boundary detection using the
Canny Baseline has been shown in Fig 12.

2) Sobel Baseline: Image boundary detection using the
SObel Baseline has been shown in the following Fig 13.

3) Pb-Lite: The probability of Boundary (Pb) lite edge
detection can be computed by averaging out both the gradients
and Canny-Sobel baselines and then eventually multiplying
them.

pb_lite = (0.33* T, +0.33* B, +0.33" C;) (0.5 (s Pb+cPb))

Image boundary detection using the Pb-Lite algorithm has
been shown in Fig 14.

Fig. 10: Brightness Gradients

Fig. 11: Color Gradients

II. PHASE II: DEEP DIVE ON DEEP LEARNING
A. Training a Basic Network

1) Implementation: The task in this part is to train a
convolutional neural network on PyTorch for the task of
classification. The input is a single CIFAR-10 image and the
output is the probabilities of 10 classes. Following are the



TABLE I: Basic Neural Network Configuration

Hyper Parameter  Value

Fig. 12: Canny Baseline Fig. 14: Pb-Lite
Optimizer SGD
Momentum 0.9

Learning Rate 0.001
Num of Epochs 20
Batch Size 50
+ Random Rotation:
transforms.RandomRotation(10)
configuration.
—Test Accuracy

Fig. 13: Sobel Baseline —

Loss over epochs has been plotted as shown in Fig 17.
—Test Loss

details concerning the implementation of the network. See Fig —Train Loss

15. for the architecture of the Neural Network.

Image transformation used is:

This rotates the image by a random angle in the range
[—10,10] degrees.
e Convert to Tensor:

transforms.ToTensor()

This converts the image to a PyTorch tensor.

2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network

TABLE II: Basic Network Model Test Output

. . Parameter Count 545,226
+ Random Horizontal Flip: Training Accuracy | 86.406%

Testing Accuracy 74.27%

transforms.RandomHorizontalFlip()



output

CIFAR10Model

Sequential[basicnet]

Fig. 17: Basic Network: Loss Plot
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Fig. 15: Basic CNN: SGD Optimizer architecture of the network has not been changed.
Image transformation used is:

transforms.ToTensor()

2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.

—Test Accuracy

Fig. 16: Basic Network: Accuracy Plot

Loss over epochs has been plotted as shown in Fig 19.
—Test Loss
B. Improving Accuracy —Train Loss
1) Implementation: The previous network used Stochastic
Gradient Descent with Momentum as an optimizer which

updates the model parameters based on the negative gradient TABLE I Basic Neural Network Configuration (IM-

. . PROVED
descent of the loss concerning each parameter multiplied by a )
fixed learning rate. On the other hand, AdamW has an adaptive Parameters Value
?earning .rate that updates mode% parameters based on histori.cal Optimizer AdamW
information. Moreover, we will also reduce the batch size Learning Rate 0.001
and number of epochs to avoid overfitting. Following is the Num of Epochs 15
Batch Size 50

configuration of the IMPROVED Basic Neural Network. The




Fig. 18: Basic Network Improved: Accuracy Plot

Fig. 19: Basic Network Improved: Loss Plot
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C. ResNet

1) Implementation: A Residual Network has been imple-
mented to further improve the overall performance of Image
Classification. ResNet uses a “shortcut” which can be defined
as the identity of input. This identity bypasses one more layer
and helps overcome the issue of vanishing gradient. Vanishing
gradients are common as the depth of the network is increased.

TABLE IV: Improved Network Model Test Output

Parameter Count 545,226
Training Accuracy | 96.826%
Testing Accuracy 68.73%

See Fig 20. for the architecture of the Neural Network.

TABLE V: Residual Network

Parameters Value

Optimizer AdamW
Learning Rate 0.001
Num of Epochs 20
Batch Size 200
Configuration [2,2,2]

Fig. 20: ResNet

2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.

Fig. 21: ResNet: Accuracy Plot

—Test Accuracy

Loss over epochs has been plotted as shown in Fig 22.

Fig. 22: ResNet: Loss Plot

—Test Loss
—Train Loss
D. ResNeXt

1) Implementation: Residual NeXt implements a similar
“shortcut” but in a parallel network manner. It introduces the



TABLE VI: ResNet Model Test Output

Parameter Count 697738 X oupt
Training Accuracy | 93.828 %
Testing Accuracy 74.19%
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Sequential[resne.

concept of cardinality and employs multiple parallel paths in
skip connection. seasenaltesne
See Fig 23. for the architecture of the Neural Network.
2) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network Sequntaesne
configuration.
—Test Accuracy

Sequential[resne.

Loss over epochs has been plotted as shown in Fig 25.
—Test Loss ReLU[r1]

—Train Loss
E. DenseNet

Convzdconv...

DenseNet introduces the concept of feature reuse and dense
connectivity. It also provides output concatenation with the
input of subsequent layers. This provides a strong feature prop-
agation. The architecture and configuration used for DenseNet
has been provided below.

1) Evaluation: The train and test accuracy plots were
obtained during the training phase of the above network
configuration.

m;‘ut
Fig. 23: ResNeXt Archituecture

TABLE VII: Residual Next Network
—Test Accuracy

Parameters Value

Optimizer AdamW ) )
Learning Rate 0.001 Loss over epochs has been plotted as shown in Fig 28.
Num of Epochs 15

Batch Size 128 —Test Loss

Configuration [3,4,6,3] —Train Loss




Fig. 24: ResNeXt: Accuracy Plot

Fig. 25: ResNeXt: Loss Plot
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F. Analysis

To conclude, AdamW showed a better performance
compared to Stochastic Gradient DenseNet with momentum
and hence AdamW was chosen for further training. Following
is the analysis of the four networks implemented:

o The basic network was able to achieve a higher training

TABLE VIII: ResNeXt Model Test Output

Parameter Count | 23019146
Training Accuracy | 94.854 %
Testing Accuracy 71.77 %

TABLE IX: Dense Network

Parameters Value
Optimizer AdamW

Learning Rate 0.001
Num of Epochs 15
Batch Size 64
Growth Rate 12
Depth 32
Reduction Factor 0.5

nnnnn

uuuuu

Can2dicons

Convadcan..) (Bacrad

Fig. 26: DenseNet

accuracy but comparatively lower testing accuracy. A
possible cause for this can be overfitting where the model
learns efficiently but fails to generalize the new dataset.
ResNet and ResNext showcase a drastic increase in train-
ing accuracy which means the model is very well efficient
in learning. However, the gap between training and testing
accuracy has reduced but still remains. Increasing the
depth and standardizing the data may help overcome the
gap.

DenseNet performs exceptionally well in bridging the gap
between training and testing accuracy. This shows that it
is more like to generalize new data better as compared to
other networks. One thing to note here is the number
of epochs in training has been subsequently reduced

TABLE X: DenseNet Model Test Output

Parameter Count 105214
Training Accuracy | 84.854 %
Testing Accuracy 78.23 %
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Fig. 28: DenseNet: Loss Plot

DenseNet Confusion Matrix of testing data
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due to computation limitations. Therefore, increasing the
number of epochs may help improve the accuracy. For
comparison, see below table.
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