
RBE/CS 549 Computer Vision
HW0 - ALOHOMORA

Puneet Shetty
Robotics Engineering Department

Worcester Polytechnic Institute

Abstract

There are two components to this assignment: A) "Shake my Boundary," in which gradients, Sobel and Canny Baselines,
texture, brightness, and color maps are computed to provide a probability-based edge identification method. B) "Deep
Dive on Deep Learning," in which objects from the CIFAR10 BSDS500 dataset are classified by comparing several deep
learning architectures.Here, I’ve created a boundary detection method called pb (probability of boundary), which looks for
borders by analyzing data on brightness, color, and texture at various sizes. A per-pixel probability of boundary is the result.
Additionally, I have used the CIFAR-10 dataset to train and evaluate a variety of models, including ResNet, ResNext, and
DenseNet.

Index Terms—Edge Detection, Sobel, Canny, CIFAR10, BSDS500, ResNet, DenseNet, ResNeXt, Edge Detection, Sobel,
Canny, CIFAR10, Probability-based edge detection, Convolutional Neural Networks

PHASE 1: SHAKE MY
BOUNDARY

The problem statement of boundary detection is in-
triguing. We determine the boundary given an image
by observing the way an object changes into another.
Even though boundary detection appears simple to
humans, boundary or edge recognition from a single
image is challenging to accomplish. To obtain edges,
the majority of current approaches only alter the im-
age’s intensities. In this assignment, we employ three
distinct filters and a probability-based edge detection
method that takes into account three distinct parame-
ters: texture, brightness, and color changes. Oriented
Derivative of Gaussian, Leung-Malik (LM), Gabor
Filter-banks. The presented pb boundary detecting
algorithm is implemented in this part. It employs
both the intensity discontinuities and the texture and
color information found in the image, which sets it
apart from the widely used classical CV approaches
found in Sobel and Canny Filters. The sections that
follow walk you through these four steps:

1. Filter Banks
2. The Texture, Brightness, and Color maps
3. Gradients of texture, brightness, and color (Tg,

Bg, and Cg)
4. Pb-lite production in conjunction with baselines

We’ll be working our way through each of the previ-
ously listed steps.

Filter Banks

In this section, the initial phase of the suggested Pb
light border detection is to filter out the pictures
using the collection of filter banks. For this reason,

Figure 1: Original Images

HW0 -ALOHOMORA

Figure 2: DoG Filter Bank

we have three distinct sets of filter banks below. By
applying these filters on photos that include these
banks, we may develop the low-level characteristics
that make up texture.

1. Oriented Derivative of Gaussian Filter Bank
Oriented DoG Filter Bank are created by
convolving a simple Sobel Filter and a
Gaussian kernel and further rotating results.
Here I have total 2 scales and 16 different
orientations which gives us 32 filters. Fig. 2
shows these filters.

2. Leung-Malik (LM) Filter Bank
Leung-malik filter-banks are formed by
multi-scale, multi- orientation filter-bank
consisting 48 different filters. There are
three different types of Leung-malik fil-
ters. In first type of filters, first and sec-
ond derivative filters occur at the first
3 scales with an elongation factor of 3
(σy = 3σx). In second type of filter, Leung-
malik small filters occurs at basic scales,σ =
1,
√

2, 2, 2
√

2. The third type of filter, Leung-
malik large filters occurs at basic scales
σ =

√
2, 2, 2

√
2, 4 Leung-Malik filters are

obtained by combining 4 different combina-
tions of filters: 1) First Derivative of Gaus-
sian Filter 2)Second Derivative of Gaussian
Filter 3) Laplacian of Gaussian Filter 4)
Gaussian Filter. Fig. 3 and Fig. 4 show
the LM filters.

3. Gabor Filter Bank
Gabor filters are designed on the filters in
the human visual system. A Gabor filter

Figure 3: LM - Small Filter

Figure 4: LM - Large Filter

2 RBE/ CS 549 - Computer Vision

HW0 -ALOHOMORA

Figure 5: Gabor Filter

is a gaussian kernel function modulated
by a sinusoidal plane wave. The Gabot
filter has scale of 8, 16 and 24, it also has
8 orientations with 2, 4, 6 frequencies and
kernel size of 49. Fig. 5 shows these filters

Texton Brightness and Color Maps

1. Texton Map
A vector of filter responses centered on each
pixel is produced when an input picture
is filtered using each member of the filter
bank. It is possible to think of a distribution
of these N-dimensional filter responses as
encoding texture qualities. Here, we have
made this format simpler by substituting a
discrete Texton ID for each Ndimensional
vector. To do this, we use K-means clus-
tering to group the filter responses at each
pixel in the picture into K Textons. Rather
of a vector of high-dimensional, real-valued
filter responses, each pixel is then repre-
sented by a one-dimensional, discrete clus-
ter ID. After that, this is shown as a sin-
gle channel picture with values between
[1,2,3,...,K].K is equal to 64. Subsequently,
it was noted that the pictures’ filtered out-
put had low intensity values, which led to
inadequate grouping. Thus, normalizing
the output picture in the 0-255 range after
filtering enhanced the clustering.In order to
cluster all of the answers at all pixels in the
picture for K textons using Kmeans, we first
capture the texture changes in the image

Figure 6: a) DoG b) LMS c) LML d) Gabor filters on an Image

and then use the texture variations to create
an N-dimensional vector. This allows us to
locate the Texton Map. Fig. 7 shows the
Texton Maps of the Images

2. Brightness Map
The only steps that is required to create
a brightness map is to record the varia-
tions in image brightness. Once more, we
use kmeans clustering to group the bright-
ness values (the grayscale equivalent of the
color image) into a predetermined number
of clusters (K=16). The clustered result is
referred to as the brightness map B. By mea-
suring the brightness change in the image,
we can create a brightness map. Then, we
can use Kmeans clustering to cluster the
brightness values for the grayscale counter-
part of a color image by selecting a set of
cluster bins. Fig. 8 shows these maps.

3. Color Map
Retaining the image’s color variations or
chrominance content is the idea behind the
color map. Here, again we cluster the RGB
color values using kmeans clustering into
a given number of clusters (K=16). The
clustered output is referred to as the color
map C..We find Color Map by collecting
color changes or chrominance content in
the image and cluster the color values (3
values per pixel (RGB color channels)) us-
ing Kmeans clustering by choosing a set of
cluster bins.

RBE/ CS 549 - Computer Vision 3

HW0 -ALOHOMORA

Figure 7: Texton Map of the Images

Figure 8: Brightness Map of Images

Figure 9: Color Maps of the Images

Texton Brightness and Color Gradients

Gradients of texture, brightness, and color indicate
how much the distributions of texture, color, and
brightness change at each pixel. We must calculate
the differences in values across various forms and
sizes in order to determine Tg, Bg, and Cg. Half-disk
masks are a very effective way to accomplish this.

1. Half-Disc Masks
The half-disc masks are simple binary im-
ages of half-discs. Using a filtering process,
we can calculate the chi-square distances
considerably faster than if we were to loop
over every pixel neighborhood and aggre-
gate counts for histograms. These masks
are quite easy to construct. Fig. 10 dis-
plays the set of masks utilized in this work,
which have three scales and eight orienta-
tions. Half-Disc Masks are binary picture
pairings of half-discs that are constrained
by an equation of circles to either x and y
or both within a specific range and range of
angles. By comparing the distributions of
left/right half-disc pairs—opposing orien-
tations of filters at the same scale—centered
at a pixel, we are able to determine Tg, Bg,
and Cg. The gradient ought to be mod-
est if the distributions are similar. The
gradient ought to be substantial if the dis-
tributions are not identical. We will ulti-
mately obtain a set of local gradient mea-
surements that encode the rate at which
the texture or brightness distributions are
changing at various scales and angles be-

4 RBE/ CS 549 - Computer Vision

HW0 -ALOHOMORA

Figure 10: Half Disk Masks

cause our half-discs cover many orienta-
tions and scales. We will use the chi-square
measure to compare the distributions of
texton, brightness, and color. When com-
paring two histograms, one commonly used
statistic is the chi-square distance.

2. K-means clustering
By minimizing inertia or the sum of squares
inside a cluster, the K-means algorithm at-
tempts to organize samples into groups of
equal variance in order to cluster data. A
set of N samples X is divided into K distinct
clusters C using the Kmeans method, each
of which is characterized by the mean ui of
the samples within it. In order to create new
centroids for each cluster, we first initialize
the number of clusters, randomly initialize
the centroid inside each cluster, then assign
each point to the closest centroid until the
centroid positions stay constant and are not
influenced by additional iterations.

3. Chi-square Distance
A statistical technique utilized in nu-
merous applications, such as similar
image retrieval, picture texture, and
feature extraction, is the chi-square dis-
tance. It measures the similarity be-
tween two feature matrices (h, g). Be-
cause of its distributional equivalency
property, it guarantees the invariance
of the distances between rows and
columns. Chi-sqaure distance is used
to compare each map with certain bins
against a half disk filter bank in order

Figure 11: Texton Gradient of the Images

to determine the different gradient val-
ues.
X 2 = 1

2 ∑K
i=1

gi−hi
2

gi+hi

Probability based detection

Finally, we use chi square distances to the combined
filter data to create texture brightness and color gra-
dients. We utilize a weighted sum over Sobel and
Canny baseline images for the photos to get the final
edge from these gradients. The weighted total of
gradients over various baselines is the final result. It
is discovered that by using Sobel and Canny edge de-
tectors, we are able to locate the edges of every object
and variation present in the image, despite the fact
that many approaches simply use Sobel or Canny
edge detectors to find edges in an image. This is
also included in many open-source online packages.
We employ a rigorous technique in this assignment
to apply several filter operations on the image and
ultimately detect the edges of specific objects in the
image.

RBE/ CS 549 - Computer Vision 5

HW0 -ALOHOMORA

Figure 12: Brightness Gradient of the Images

Figure 13: Color Gradient of the Images

Figure 14: a) Sobel b) Canny c) Ground Truth d) Final Result
of Image

Figure 15: Final Result of PB-Lite Detection on Images

6 RBE/ CS 549 - Computer Vision

HW0 -ALOHOMORA

PHASE 2 : DEEP DIVE INTO
DEEP LEARNING

In order to analyze the training and testing accuracy
and loss values for training with the CIFAR-10 data-
set, which comprises of 60000 32*32 color images
in 10 classes with 6000 images per class, we com-
pare many neural network designs by changing the
number of parameters. There are 50,000 and 10,000
photos in the training and testing data sets, respec-
tively. Initially, I trained for minimum epochs using
a convolution neural network. For the computation
of loss and learning rate of 1e-5 for every network
architecture, I have employed the ADAM optimizer
and the Cross Entropy function. I have used Google
Colabotory’s Tesla4 GPU to train and test the models.
I have not utilized any standardization or normaliza-
tion for the basic CNN architecture, and I have used
ResNet18, DenseNet, and ResNeXt for all additional
versions.

Neural Networks

1. First Neural Network
I tried to implement the simple neural net-
work. There were a few bugs in the starter
code, but after debugging them I was able
to implement the most basic Neural Net-
work following the instructions in the as-
signment. The architecture for my network
is shown in the figure. I used the Adam
Optimizer with a learning rate of 0.001, and
let the network train for 16 Epochs with a
batch size of 10. I also applied MaxPooling
to my layers. Furthermore, I used CrossEn-
tropy loss function. After each epoch I cal-
culate the mean loss and accuracy and plot-
ted them accordingly. The number of pa-
rameters in the network are 35712. The test
set was able to predict the image with an
accuracy of 19.82%. This is understandable
since I just simply wanted to train a neural
network without any complications. The
confusion matrix is shown in figure 16.

2. Improved Neural Network
The number of epochs was kept at 16 and
the mini batch size was increased to 64 in
order to improve the accuracy of the train
set. Furthermore, after each convolution
layer, batch normalizing layers have been
added. The accuracy of the test set 65.85
percent. The Adam optimizer with a 1e-3
learning rate was employed. There were
12,628 parameters in the model. Fig. 19
offer the confusion matrix for dataset

Figure 16: Basic Block Confusion Matrix

Figure 17: Accuracy of Basic Net

Figure 18: Loss of Basic Net

Figure 19: Improved Block Confusion Matrix

RBE/ CS 549 - Computer Vision 7

HW0 -ALOHOMORA

Figure 20: Accuracy of Improved Net

Figure 21: Loss of Improved Net

Figure 22: Basic Block of ResNet used

Figure 23: ResNet Accuracy

3. ResNet
The input first goes through the following
steps: Max Pooling, Batch Norm, Relu ac-
tivation, and Convolution. The main block
then appears, and it is repeated four times.
The foundation of the ResNet architecture
is this block. It is better explained in Figure
22. Thus, a 1 * 1 convolution occurs initially,
then a 3 * 3, and finally a 1 * 1. BatchNorm
and Relu layers come after these convolu-
tion layers. After that, the block’s origin
input and the resultant output are com-
bined, and Relu is used as the input for
the following block. The four-blocks have
two of these blocks shown in in Figure 22,
respectively.

4. ResNeXt
Figure 26 shows the implemented ResNeXt
architecture. The architecture of ResNeXt
and ResNet are extremely similar. The first
three layers inside the ResNeXt block are
the standard Convolution 1*1, Batch-Norm,
and Relu. A characteristic called cardinal-
ity, added to the second convolution layer
(3*3), groups the convolution layer with 32
number of similar layers. After that, the out-

8 RBE/ CS 549 - Computer Vision

HW0 -ALOHOMORA

Figure 24: ResNet Loss

Figure 25: ResNet Confusion Matrix

put is added to a downsampled input and
passes through layers of BatchNorm, Relu,
Convolution 1*1, and BatchNorm before
passing via Relu activation. These ResNeXt
blocks are contained in each of the four
layer blocks.

5. DenseNet
The two sorts of blocks are as follows: the
dense block, which consists of several bot-
tleneck levels. A 1*1 and a 3*3 convolu-
tional layer make up the majority of each
bottleneck layer. Concatenated to the input

Figure 26: ResNeXt architecture followed

Figure 27: ResNeXt Accuracy

Figure 28: ResNeXt Loss

Figure 29: ResNeXt Confusion Matrix

RBE/ CS 549 - Computer Vision 9

HW0 -ALOHOMORA

Figure 30: Transition layer of DenseNet

Table 1: Comparison of all models

Model ResNet ResNeXt DenseNet

Optimizer Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3

Batch Size 256 256 256
Parameters 11689512 234355586 70464673

Train Accuracy 100% 99.6% 98.82%
Test Accuracy 73.85% 82.92% 76.69%

Loss 1.56% 1.94% 3.57%

of the layer is the output of the second con-
volution. Within the dense blocks of this
architecture, there are 6, 12, 24, and 16 bot-
tleneck layers. Also, there is a transition
block (Figure 30), which is mostly formed
of 1*1 convolution, and an average pool,
for down- sampling between consecutive
dense blocks.

Final Analysis

We may conclude from the final analysis that the
ResNeXT neural network design has the best perfor-
mance. All things considered, the neural network
architectures that we have put in place—ResNet, Rest-
NeXt, and DenseNet—really increase system accu-
racy and decrease loss.

Figure 31: DenseLayer architecture followed

Figure 32: DenseNet Accuracy

10 RBE/ CS 549 - Computer Vision

HW0 -ALOHOMORA

Figure 33: DenseNet Loss

Figure 34: DenseNet Confusion Matrix

Figure 35: Accuracies Compared

Figure 36: Losses Compared

RBE/ CS 549 - Computer Vision 11

	PHASE 1: SHAKE MY BOUNDARY
	Filter Banks
	Texton Brightness and Color Maps
	Texton Brightness and Color Gradients
	Probability based detection

	PHASE 2 : DEEP DIVE INTO DEEP LEARNING
	Neural Networks
	Final Analysis

