
HW0 : Alohomora
Thanikai Adhithiyan Shanmugam
Robotics Engineering Department
Worcester Polytechnic Insititute

(Using 1 Late Day)

Abstract—Boundary detection is an important, well-studied
computer vision problem. It would be nice to have algorithms
which know where one object transitions to another. This paper
introduces a simplified version of the probability of boundary(pb)
detection algorithm and compares with the classical Sobel and
Canny edge detection algorithm baselines. This paper also trains
and compares different neural network models with the CIFAR10
dataset with various criteria like number of parameters, and train
and test set accuracies and provides a detailed analysis of why
one architecture works better than another one.

I. PHASE 1

A. Filter Banks

The first step of the pb lite boundary detection pipeline is to
filter the image with a set of filter banks. We will create three
different sets of filter banks for this purpose: Difference of
Gaussian(DoG), Leung-Maik Filters(LM), and Gabor Filters.

1) DoG: The DoG filter bank is created by convolving
the Sobel Filter with the Gaussian Kernel and rotating it in
different orientations. In this work, the filter bank contains 2
scales and 16 orientations constituting 32 filters.

Fig. 1. DoG Filter Bank

2) Leung Malik: The Leung Malik(LM) filter bank consists
of the 1st derivative and 2nd derivative Gaussian, Laplacian
of Gaussian kernel and 2D Gaussian Kernel of different
orientations and scales. In our work, we have 4 scales of
1,
√
2, 2, 2

√
2 and 6 orientation for the 1st and 2nd derivatives.

Since this work includes only Small LM filters, the Gaussians
occur at the four basic scales while the 8 LOG filters occur at

σ and 3σ which constitutes 60 filters in total.

Fig. 2. LM Filter Bank

3) Gabor Filter: A typical gabor filter is a gaussian kernel
function modulated by a sinusoidal plane wave. In this paper,
the gabor filter has implemented along 5 scales of [2,3,4,5,6]
and 8 orientations totalling 40 filters

Fig. 3. Gabor Filter Bank



B. Half Disc Masks
Masking is an important approach in image processing

and computer vision because it allows for the separation of
certain objects or areas within an image. The paper implements
Half Disc Masks. The half-disc masks are simply (pairs of)
binary images of half-discs. Half disks masks in this paper are
implemented by creating a gray scale semi-disk and rotating
with different orientations. Here, we have used 4 radius or
scales for generating the Mask.
Half disks are very important because it will allow us to

Fig. 4. Gabor Filter Bank

compute the 2(chi-square) distances (finally obtain values of
Tg,Bg,Cg) using a filtering operation, which is much faster
than looping over each pixel neighborhood and aggregating
counts for histograms

C. Textron, Color and Brightness Maps
The Textron, colour and brightness as the name suggests,

helps us gain information about the texture, color and
brightness of the image at different areas respectively.

In this paper, the Textron map is created by passing the im-
age through the combination of the filter bank discussed below
and is normalised from (0,255). Since, there are 132 filters in
total, we will have 132 dimensional vector corresponding to
each pixel. The KMean clustering of 64 as suggested in the
problem statement is implemented.

The concept of the brightness map is as simple as capturing
the brightness changes in the image. THe brightness map is
created by converting the image into a black and white image
and the brightness values are clustered using KMeans. Here,
the values are clustered in groups of 16.

The concept of the colour map is to capture the color
changes or chrominance content in the image. THe brightness
map is created by clustering the color values using KMeans.
Here, the values are clustered in groups of 16.

D. Textron, Color and Brightness Gradient Maps
Tg, Bg, and Cg encode how much the texture, brightness

and colour distributions change at a pixel. The values are

Fig. 5. Image1: Texton, Brightness, Color

Fig. 6. Image2: Texton, Brightness, Color

Fig. 7. Image3: Texton, Brightness, Color

Fig. 8. Image4: Texton, Brightness, Color

calculated by comparing the values in the left and right pairs
of half-disk masks.
The chi distance is a frequently used metric for comparing
two histograms. Chi distance between two histograms g and h
and the formula is used as mentioned in the problem statement.

χ2 =
1

2
sumK

n=1

(g − h)2

g + h+ 10−7
(1)

E. Probability of boundary detection

Using the calculated gradients and the Canny and Sobel
baselines, the Pb is calculated as given in the problem state-
ment as the results are listed below. The weights are taken as
[0.5, 0.5 as instructed.

χ2 =
Tg +Bg + Cg

3
(w1Canny + w2Sobel) (2)

II. PHASE 2

In this section, we are exploring Neural Networks for
classification on the CIFAR10 dataset. The dataset contains
50000 training images and 10000 training images which are
labelled into 10 classes.
The Network used in this paper:
1) SimpleNet
2) Modified SimpleNet
3) ResNet



Fig. 9. Image5: Texton, Brightness, Color

Fig. 10. Image6: Texton, Brightness, Color

Fig. 11. Image7: Texton, Brightness, Color

Fig. 12. Image8: Texton, Brightness, Color

Fig. 13. Image9: Texton, Brightness, Color

Fig. 14. Image10: Texton, Brightness, Color

4) ResNeXt
5) DenseNet
Let’s discuss each model one by one

A. SimpleNet

The SimpleNet is a basic adaptation of CIFAR10 Model.
The SimpleNet consists of 2 Convolutional Layers having a
kernel size 3 and padding 1. Each layer uses ReLu activation
function and max Padding is done which reduces the size of
each output into half. Then, the model consists of a Flatten
Layer which flattens the output from the convolution layer
and sends it to 3 Fully Connected Layers of sizes 120,84,10
respectively. THe fully connected layers used the sigmoid
activation function. The architecture of the Model is given
below and the confusion matrix along with the accuracy of
test and training are mentioned in the paper.

Fig. 15. Image1: Gradient Texton, Brightness, Color

Fig. 16. Image2: Gradient Texton, Brightness, Color

Fig. 17. Image3: Gradient Texton, Brightness, Color

Fig. 18. Image4: Gradient Texton, Brightness, Color

B. Modified SimpleNet

The Modified SimpleNet is a basic adaptation of the CI-
FAR10 Model.The Modified has 2 extra layers compared to
The SimpleNet is added with batch normalization to every
layer including the convolutional and the fully connected
layers. The hyperparameters remain the same whereas data
augmentation has been added to the model and the model
has been standardised. The image is rotated and cropped. The
architecture of the Model is given below and the confusion
matrix along with the accuracy of test and training are men-
tioned in the paper.

C. ResNet

The ResNet model implemented in this paper is an adapta-
tion of the ResNet50 and ResNet100 architecture. This model
starts with a convolutional layer of kernel size 3 and padding
1 and is then inputted into 2 Residual blocks which contain
2 convolutional layers with kernel size 3 and padding 1 with
ReLu activation function. The dense blocks are then connected
with 3 fully connected layers of size 120,84,10 with sigmoid
and softmax activation functions respectively. The architecture
of the Model is given below and the confusion matrix along
with the accuracy of test and training are mentioned in the
paper.



Fig. 19. Image5: Gradient Texton, Brightness, Color

Fig. 20. Image6: Gradient Texton, Brightness, Color

Fig. 21. Image7: Gradient Texton, Brightness, Color

Fig. 22. Image8: Gradient Texton, Brightness, Color

Fig. 23. Image9: Gradient Texton, Brightness, Color

Fig. 24. Image10: Gradient Texton, Brightness, Color

D. ResNeXt

The ResNet model implemented in this paper is an adap-
tation of the ResNeXt25 and ResNeXt59 architecture. This
model starts with a convolutional layer of kernel size 3 and
padding 1 and is then inputted into 2 ResNext blocks which
contain 3 convolutional layers with kernel size 3 and padding
1 with ReLu activation function. The resnext blocks are con-
nected by a single convolution layer having the same specs as
the other convolution networks. The blocks are then connected
with 3 fully connected layers of size 120,84,10 with sigmoid
and softmax activation functions respectively. The architecture
of the Model is given below and the confusion matrix along
with the accuracy of test and training are mentioned in the
paper.

E. DenseNet

The DenseNet model implemented in this paper is an
adaptation of the DenseNet architecture. This model contains 2
dense blocks which contain 3 convolutional layers with kernel

Fig. 25. Image1: Canny,Pb,Sobel

Fig. 26. Image2: Canny,Pb,Sobel

Fig. 27. Image3: Canny,Pb,Sobel

Fig. 28. Image4: Canny,Pb,Sobel

Fig. 29. Image5: Canny,Pb,Sobel

size 3 and padding 1 with ReLu activation function. The dense
blocks are then connected with 3 fully connected layers of
size 120,84,10 with sigmoid and softmax activation functions
respectively. The architecture of the Model is given below
and the confusion matrix along with the accuracy of test and
training are mentioned in the paper.

F. Loss Function and Hyperparameters

The Loss function utilised for all the models in this paper
is the cross entropy function. For optimizing the loss function,
we use the Adam optimization which is a combination of
RMSProp and momentum algorithms where the learning rate
has been set to 0.001 and the beta value which constitutes
square gradients (0.9,0.999). The dataset has been divided into
min batches of 128 to improve faster training and efficiency.
Each model has been trained over 20 epochs. The image is
also augmented with cropping and flip techniques to increase
data and efficiency for modified SimpleNet.

G. Results and Inferences

The train accuracy and the loss values was calculated over
each during training of each models. DenseNet and ResNeXt
learned the most as the train accuracies were 97.28 and 93.97
respectively. ResNet had more accuracy than ResNeXt but
to exponentially larger number of parameters learned during
training makes ResNeXt more efficient. SimpleNet as expected



Fig. 30. Image6: Canny,Pb,Sobel

Fig. 31. Image7: Canny,Pb,Sobel

Fig. 32. Image8: Canny,Pb,Sobel

Fig. 33. Image9: Canny,Pb,Sobel

Fig. 34. Image10: Canny,Pb,Sobel

had an accuracy of 56.25 and the modified one had 69.53.//
// The model was tested on 10,000 images of the CIFAR10
dataset. The accuracies of all the models were almost similar
to each other. Modified SimpleNet did perform better than
was anticipated which infers that batch normalization and aug-
mentation is needed for this particular dataset to be classified
better with Neural Network models. SimpleNet accuracy was
the lowest among all as expected. The results of the models
can be inferred from the table below.

III. CONCLUSION

A. Phase I

Comparison of Pb-lite detection algorithm with Canny and
Sobel Baselines led to interesting results. We can infer that Pb-
lite performs better than Sobel Baselines. Although, it is on par
with Canny Baseline on performance, Pb-lite detects the edges
better where Canny baseline has lot more false detection. Also,
Pb-lite also the user to choose filter banks and upon selecting
a more efficient strategy for selecting filters, Pb-lite surely
outpeforms the other 2. //

B. Phase II

DenseNet outperforms the other models in terms of train
accuracy. Although, the test accuracy is on par with ResNet
and ResNeXt. Although SimpleNet outperforms others in
terms of total parameters required for training, it still provides
poor efficiency. ResNeXt is better than ResNet and DenseNet
which has similar test efficiencies. It has shown that BatchNor-
malization is useful for this dataset as it increase the efficiency
of image classification significantly. Also, augmentation of the
data by cropping it and flipping it horizontally has proven
to be useful. Efficiency can be still improved by increasing
kernels in each convolution layer. Overall, on comparison
among the model on CIFAR10 dataset, DenseNet proved to
be the most efficient one followed by ResNeXt and ResNet.
Although Modified SimpleNet gave good test accuracy, its
training accuracy of the data is too low.



Fig. 35. SimpleNet Architecture

Fig. 36. SimpleNet Accuracies

Fig. 37. SimpleNet Train Loss

Fig. 38. SimpleNet Confusion Matrix

Fig. 39. Modified SimpleNet Architecture

Fig. 40. Modified SimpleNet Accuracies

Fig. 41. Modified SimpleNet Train Loss

Fig. 42. Modified SimpleNet Confusion Matrix



Fig. 43. ResNet Architecture

Fig. 44. ResNet Accuracies

Fig. 45. ResNet Train Loss

Fig. 46. ResNeXt Confusion Matrix

Fig. 47. ResNeXt Architecture

Fig. 48. ResNeXt Accuracies

Fig. 49. ResNeXt Train Loss

Fig. 50. ResNeXt Confusion Matrix



Fig. 51. DenseNet Architecture

Fig. 52. DenseNet Accuracies

Fig. 53. DenseNet Loss Values

Fig. 54. DenseNet Train Confusion Matrix

Fig. 55. Result Table


