
Computer Vision HW0: Alohomora

Abhijeet Sanjay Rathi
MS Robotics Engineering

asrathi@wpi.edu
901015394

Abstract—Here, I have implemented a pb (Probability of
Boundary) boundary detection algorithm which is far more
better than the classical edge detection algorithms. This was for
the Phase 1. For Phase 2, I have implemented Simple Neural
Network, ResNet, ResNext and DenseNet for CIFAR 10-dataset.

I. PHASE 1: SHAKE MY BOUNDARY

In this section, I implemented the Probability of Boundary
detection algorithm. It is better than the classical edge de-
tection algorithms including Sobel and Canny as it considers
texture discontinuities and color discontinuities along with
intensity discontinuities. This is done in the following 4 steps:

1) Filter Banks Creation
2) Texton, Brightness and Color Map
3) Texton, Brightness and Color Gradient Map
4) Probability of Boundary

A. Filter Banks Creation

The first step of pb lite boundary detection algorithm is to
filter the images with a set of filters. Filters are used to extract
the low level features which represents the texture properties.
So, I created a set of three different filter banks: Oriented DoG
Filters, Leung-Malik Filters and Gabor Filters.

1) Oriented Difference of Gaussian (DoG) Filters
This is a simple and effective filter bank. They are
created by convolving simple Sobel filter and Gaussian
filter and then rotating the output. For this, I have
considered 2 scales, 16 orientations and kernel size as
41.

2) Leung-Malik Filters
The Leung-Malik Filters, also referred to as LM Filters,
constitute a set of multi-scale and multi-orientation
filters. The LM filter comprises 48 filters, encompassing
first and second-order derivatives of Gaussians at 6
orientations and 3 scales, totaling 36 filters, along with
8 Laplacian of Gaussian (LOG) filters and 4 Gaussians.
Two versions of the LM filter are examined in this con-
text. In LM Small (LMS), the filters occur at basic sigma
scales (1,

√
2, 2, 2

√
2). The first and second derivative

filters manifest at the first three scales with an elongation
factor of 3. The Gaussians manifest at the four basic
scales, while the 8 LOG filters manifest at σ and 3σ. For
LM Large (LML), the filters occur at the basic sigma
scales (

√
2, 2, 2

√
2, 4).

Fig. 1: Oriented Difference of Gaussian (DoG) Filters

3) Gabor Filters
Gabor Filters are crafted with inspiration from the filters
found in the human visual system. A Gabor filter is
essentially a Gaussian kernel function modulated by a
sinusoidal plane wave. The Gabor filter is characterized
by scales of 3, 6, and 12, featuring 8 orientations and 4,
8, 16 frequencies, with a kernel size of 41.

B. Texton, Brightness and Color Map

1) Texton Map
In essence, the approach involves the application of
filter banks to generate N-dimensional responses for
individual pixels in an image. Subsequently, these re-
sponses undergo k-means clustering to form K textons,
effectively reducing the dimensionality from N to 1.
This process, known as Vector Quantization, assigns
each pixel a one-dimensional cluster ID, representing
its texture properties. The typical choice for K in this
context is 64 clusters. To elaborate further, the method
employs filter banks, as explained in the preceding
section, to discern texture properties within an image.



Fig. 2: LM Filters (LMS + LML)

Fig. 3: Gabor Filters

Utilizing multiple filters in each bank and employing
three filter banks, the method produces a vector of filter
responses for each pixel, encoding texture properties. By
applying the K-means algorithm with K set to 64, pixels
with similar texture properties are grouped together
based on their filter response vectors. The result of this
K-means clustering is a Texton map, indicating discrete
cluster IDs assigned to each pixel.

2) Brightness Map
The concept of the brightness map is quite straightfor-
ward, involving the capture of brightness changes in an

image. In this process, the brightness values are clustered
using k-means clustering on the grayscale equivalent
of the color image. The image is initially converted
to grayscale, and then the K-means algorithm with
K=16 is applied to obtain brightness maps. The resulting
clustered output is termed the brightness map.

3) Color Map
The idea behind the color map is to record the color
variations or chrominance content within an image. In
this process, we once again employ k-means clustering
to cluster the color values (since there are 3 values
per pixel with RGB color channels) into a 16 number
of clusters. The resulting output of this clustering is
referred to as the color map.

(a) T (b) B (c) C

Fig. 4: T, B and C for Image 1

(a) T (b) B (c) C

Fig. 5: T, B and C for Image 2

(a) T (b) B (c) C

Fig. 6: T, B and C for Image 3

(a) T (b) B (c) C

Fig. 7: T, B and C for Image 4

C. Texton, Brightness and Color Gradients (Tg , Bg , and Cg)

Tg , Bg , and Cg represent the extent of changes in texture,
brightness, and color distributions at a pixel. To derive Tg , Bg ,
and Cg , it is necessary to compute the differences in values



(a) T (b) B (c) C

Fig. 8: T, B and C for Image 5

(a) T (b) B (c) C

Fig. 9: T, B and C for Image 6

across various shapes and sizes. These values are calculated by
comparing distributions in pairs of left/right half-discs, which
correspond to opposing directions of filters at the same scale.
This process can be efficiently achieved through the utilization
of half-disc masks.

1) Half Disk Masks
Half-disk masks are binary images representing half
circles. They play a crucial role in calculating changes in
texture or brightness distributions across various scales
and angles. These masks are employed for comparing
texture, color, and brightness properties over the disk
area, offering a softer filter compared to the Sobel op-
erator, which focuses on immediate pixels. The creation
of these masks involves using different radii, such as 2,
4, 8, 16 and 32, and 18 orientations in this particular
case.

2) Chi - Square Distance
In the computation of the X2 distance, the images
undergo convolution with left/right half-disc pairs, re-
sulting in two histograms denoted as g and h. The X2

distance is then calculated using the formula below:

X2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

This process is applied separately to each texton, bright-
ness, and color map. For N half-disk pairs, N matrices
are obtained, where each pixel value corresponds to the
X2 distance. To derive the gradients of Tg , Bg , and Cg ,
the average of these N matrices is taken.

3) Sobel and Canny Baselines
The Sobel and Canny images are loaded using the
cv2.imread() function.

D. Probability of Boundary (Pb)

In the final step, I integrated information from the features
with a baseline method, relying on Sobel and Canny edge

(a) T (b) B (c) C

Fig. 10: T, B and C for Image 7

(a) T (b) B (c) C

Fig. 11: T, B and C for Image 8

detection, using the following equation:

PbEdges =
Tg +Bg + Cg

3
◦ (w1 ∗ cannyPb+w2 ∗sobelPb)

The ◦ symbol denotes the Hadamard product operator, repre-
senting elementwise multiplication between two matrices. The
weights w1 and w2 are both set to 0.5, resulting in a simple
mean for the weighted average.

E. Analysis

It is observed that pb-lite edges exhibit a reduced amount
of noise compared to Canny and Sobel. This improvement is
attributed to its effectiveness in suppressing false positives,
which contribute to the noise present in Sobel and Canny
outputs. The final result is enhanced, and further improve-
ments can be achieved by exploring and selecting filters that
outperform the existing ones.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this section, I implemented multiple neural network
architectures and compared them based on the number of pa-
rameters, accuracy, and loss. The four architectures employed
are: Simple Neural Network, ResNet, ResNext, and DenseNet.
A simple neural network is characterized by fewer filters and
shallower depth compared to the other architectures.

For each of the four architectures, two types of models are
trained: one with the transformation of the training dataset
and one without. I implemented a series of image transfor-
mations using the torchvision.transforms module in PyTorch,
tailored for image preprocessing in a neural network. These
transformations include a random horizontal flip with a 50%
probability, introducing variability during training. Images are
then converted to the torch float32 format and scaled, ensuring
consistent data representation. A normalization step follows,
adjusting pixel values based on predefined mean and standard
deviation values, which aids in stabilizing and accelerating the
training process.

Additionally, a random resized crop operation is applied,
where images are randomly cropped and resized to a specified



(a) T (b) B (c) C

Fig. 12: T, B and C for Image 9

(a) T (b) B (c) C

Fig. 13: T, B and C for Image 10

size of 32x32 pixels with antialiasing enabled. This set of
transformations, commonly employed in image classification
tasks, serves the dual purpose of augmenting the training
dataset for improved model generalization and preparing the
data for input into a neural network designed for image
classification on the CIFAR-10 dataset.

While generating batches for each model, I implemented a
code to ensure that 80% of the images in the mini-batch size go
for testing, and the remaining 20% are allocated for validation.
This approach helps in assessing the model’s performance on
unseen data during training. The training configurations for
each model are as follows:

1) Number of epochs: 20
2) Mini-batch size: 30
3) Optimizer: AdamW
4) Learning rate: 0.0001
5) Weight decay: 0.01

A. Simple Neural Network (SNN)

The SNN model consists of three convolutional layers with
batch normalization and ReLU activation, followed by max-
pooling to extract hierarchical features from input images. The
output is then flattened and passed through two fully connected
layers with ReLU activation. The final layer produces the
classification output. The model is designed to take images
with three color channels as input and output predictions for
the specified output size. This architecture is a common pattern
for image classification tasks.

B. ResNet

Here, I have implemented a ResNet-based neural network
architecture. It consists of two main classes: ’BottleneckRes-
net’ and ’ResNet’. The ’BottleneckResnet’ class defines a

Fig. 14: Half Disk Masks

(a) Tg (b) Bg (c) Cg

Fig. 15: Tg, BgandCg for Image 1

bottleneck residual block with three convolutional layers and
shortcut connections, while the ’ResNet’ class constructs the
overall ResNet architecture by stacking multiple blocks. Ad-
ditionally, a class named ’CIFAR10ModelResnet’ is created,
inheriting from ’ImageClassificationBase’, and serves as a
wrapper for the ResNet model with specific configurations.
The model is initialized with a bottleneck block type, an array
specifying the number of blocks in each layer, and the number
of output classes (set to 10 for CIFAR-10). This ResNet-based
model is designed such that it is able to capture complex
features in images for accurate classification, and the provided
instantiation uses bottleneck blocks with a configuration that
is known to be effective in practice.

The bottleneck layer is a key component, often associated
with architectures like ResNet. It consists of three consecutive
layers: a 1x1 convolution for dimensionality reduction, a 3x3
convolution for feature extraction, and another 1x1 convolution
for dimensionality expansion. This design efficiently balances
computational complexity, capturing intricate features in a
reduced channel space.

C. ResNext

I have implemented the ResNeXt architecture such that
it comprises of two main classes: ’BlockResnext’ and
’ResNeXt’. The ’BlockResnext’ class defines a block with



(a) Tg (b) Bg (c) Cg

Fig. 16: Tg, BgandCg for Image 2

(a) Tg (b) Bg (c) Cg

Fig. 17: Tg, BgandCg for Image 3

grouped convolutions and a shortcut connection, while the
’ResNeXt’ class constructs the overall architecture by stacking
multiple blocks. The number of blocks in each layer, cardinal-
ity, and bottleneck width are configurable parameters. Addi-
tionally, a class named ’CIFAR10ModelResnext’ serves as a
wrapper for the ResNeXt model with specific configurations.
The model is initialized with the specified number of blocks,
cardinality, and bottleneck width.

Here, Cardinality refers to the number of groups in grouped
convolutions within a block. A higher cardinality allows
the model to capture more diverse features by considering
different subsets of channels in parallel.

D. DenseNet

Here, the DenseNet architecture is implemented such that it
consists of three main classes: ’BottleneckDensnet’, ’Transi-
tion’, and ’DenseNet’. The ’BottleneckDensnet’ class defines
a bottleneck block with batch normalization and 1x1 and
3x3 convolutions. The ’Transition’ class represents transition
blocks that include batch normalization, 1x1 convolution, and
average pooling to reduce spatial dimensions. The ’DenseNet’
class constructs the overall architecture by stacking multiple
instances of the bottleneck and transition blocks. It comprises
four dense blocks, each followed by a transition block. The
model uses global average pooling and a fully connected
layer for classification. Additionally, a class named ’CI-
FAR10ModelDensenet’ serves as a wrapper for the ’DenseNet’
model with specific configurations. The model is initialized
with the specified bottleneck block type, the number of blocks
per dense block, and the growth rate.

E. Analysis

The summary table below provides an overview of dif-
ferent neural network architectures, including Simple Neural
Network, ResNet, ResNext, and DenseNet, each with various
parameters, transformation options, and associated accuracy
metrics for testing and training. Simple Neural Network ex-
hibits relatively low accuracy, influenced by the presence of
transformations. ResNet and ResNext show better accuracy,

(a) Tg (b) Bg (c) Cg

Fig. 18: Tg, BgandCg for Image 4

(a) Tg (b) Bg (c) Cg

Fig. 19: Tg, BgandCg for Image 5

with ResNet maintaining consistency regardless of transforma-
tions. DenseNet, on the other hand, demonstrates consistently
low accuracy. This happens due to very less epochs i.e. 20
for a DenseNet. To improve overall performance, potential
strategies include hyperparameter tuning, data augmentation,
ensemble learning, transfer learning, architecture modifica-
tions, regularization techniques, and experimenting with learn-
ing rate schedules. Systematic exploration of these approaches
can help enhance the models’ accuracy and generalization
capabilities.

III. CONCLUSION

All the neural network models were trained under consistent
configurations with 20 epochs, a mini-batch size of 30, and
utilized the AdamW optimizer. The learning rate was set
at 0.0001, providing a balance between convergence speed
and precision during training. Additionally, a weight decay
of 0.01 was applied, contributing to the regularization of the
models by penalizing large weights. These training settings
offer a standardized foundation for model training across the
various architectures, facilitating a fair comparison of their
performances. It’s worth noting that further refinement of
these hyperparameters, in conjunction with the recommended
strategies for improvement, could potentially yield even better
results in terms of accuracy and generalization.



(a) Tg (b) Bg (c) Cg

Fig. 20: Tg, BgandCg for Image 6

(a) Tg (b) Bg (c) Cg

Fig. 21: Tg, BgandCg for Image 7

(a) Tg (b) Bg (c) Cg

Fig. 22: Tg, BgandCg for Image 8

(a) Tg (b) Bg (c) Cg

Fig. 23: Tg, BgandCg for Image 9

(a) Tg (b) Bg (c) Cg

Fig. 24: Tg, BgandCg for Image 10

(a) Canny (b) Sobel (c) Pb

Fig. 25: Canny, Sobol and Pb for Image 1

(a) Canny (b) Sobel (c) Pb

Fig. 26: Canny, Sobol and Pb for Image 2

(a) Canny (b) Sobel (c) Pb

Fig. 27: Canny, Sobol and Pb for Image 3

(a) Canny (b) Sobel (c) Pb

Fig. 28: Canny, Sobol and Pb for Image 4

(a) Canny (b) Sobel (c) Pb

Fig. 29: Canny, Sobol and Pb for Image 5

(a) Canny (b) Sobel (c) Pb

Fig. 30: Canny, Sobol and Pb for Image 6

(a) Canny (b) Sobel (c) Pb

Fig. 31: Canny, Sobol and Pb for Image 7



(a) Canny (b) Sobel (c) Pb

Fig. 32: Canny, Sobol and Pb for Image 8

(a) Canny (b) Sobel (c) Pb

Fig. 33: Canny, Sobol and Pb for Image 9

(a) Canny (b) Sobel (c) Pb

Fig. 34: Canny, Sobol and Pb for Image 10

Fig. 35: Loss and Accuracy Plot vs Epoch: SNN with Trans-
formations

Fig. 36: Loss and Accuracy Plot vs Epoch: SNN without
Transformations

(a) Train (b) Test

Fig. 37: Train and Test Confusion Matrix: SNN with Transfor-
mations

(a) Train (b) Test

Fig. 38: Train and Test Confusion Matrix: SNN without
Transformations

Fig. 39: Loss and Accuracy Plot vs Epoch: ResNet with
Transformations



Fig. 40: Loss and Accuracy Plot vs Epoch: ResNet without
Transformations

(a) Train (b) Test

Fig. 41: Train and Test Confusion Matrix: ResNet with Trans-
formations

(a) Train (b) Test

Fig. 42: Train and Test Confusion Matrix: ResNet without
Transformations

Fig. 43: Loss and Accuracy Plot vs Epoch: ResNext with
Transformations

Fig. 44: Loss and Accuracy Plot vs Epoch: ResNext without
Transformations

(a) Train (b) Test

Fig. 45: Train and Test Confusion Matrix: ResNext with
Transformations

(a) Train (b) Test

Fig. 46: Train and Test Confusion Matrix: ResNext without
Transformations

Fig. 47: Loss and Accuracy Plot vs Epoch: DenseNet with
Transformations



Fig. 48: Loss and Accuracy Plot vs Epoch: DenseNet without
Transformations

(a) Train (b) Test

Fig. 49: Train and Test Confusion Matrix: DenseNet with
Transformations

(a) Train (b) Test

Fig. 50: Train and Test Confusion Matrix: DenseNet without
Transformations

Fig. 51: Summary of all Neural Networks


