
1

CV HW 0: Alohomora
Jesdin Raphael Computer Science

Worcester Polytechnic Institute
Email: jraphael@wpi.edu

Abstract—In this assignment, I learned about different types of
filters for finding the Boundary. I used the Oriented Derivative of
Gaussian (DoG) filters, Leung-Malik (LM) filters and the Gabor
filters to implement the pb lite filter.

I. PHASE1
For creating pb lite boundary output the first step of the pb

lite boundary detection pipeline is to filter the image with a
set of filter banks[1]. First three different sets of filter banks
were created: Oriented Derivative of Gaussian filter bank,
Leung-Malik filter bank, and Gabor Filter Bank. Using these
filter banks and half disk masks I generated a Texture Map,
Brightness Map and Color Map which were segregated into
bins using Chi Square distance.

A. Filter Banks:

Created three sets of filter banks. Each set helps capture
texture and orientation information in the image.

1) Oriented Derivative of Gaussian (DoG) filters:
• These filters capture edge information at various

orientations and scales.
• It can be calculated by convolving the sobel filter

with the gaussian kernel and then rotating it at some
angle ’o’.

• Fig 1. shows the implemented DoG filters with 2
scales and 16 orientations.

Fig. 1: Oriented DoG Filters.

2) Leung-Malik (LM) filters:
• These filters provide a comprehensive set of multi-

scale, multi-orientation filters.
• The LM filter bank comprises a variety of filters,

including edge, bar, and spot filters, distributed
across various scales and orientations.

• It encompasses a total of 48 filters, consisting of 2
Gaussian derivative filters with 6 orientations and 3
scales, along with 8 Laplacian of Gaussian filters
and 4 Gaussian filters [2].

• Two versions of LM filters were implemented. LMs
(LM Small) and LML (LM Large) which used

σ = [1,
√
2, 2, 2

√
2]

and
σ = [

√
2, 2, 2

√
2, 4]

respectively.
• Fig 2. shows the 48 implemented filters of the

Leung-Malik filter bank.

Fig. 2: Leung-Malik Filters.

3) Gabor filters:
• These filters are inspired by the human visual sys-

tem, and are used for texture analysis.
• Eqn 1. shows the formula for the Gabor Filter [3].
• Fig 3. shows the 64 implemented Gabor Filters.

Fig. 3: Gabor Filters.

G(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(1)

Where : λ : Wavelength
θ : Orientation
ψ : Phase offset
σ : Standard deviation of the Gaussian
γ : Aspect ratio

B. Texton Map (T)

By filtering the image with the above filter banks, we get a
set of filter responses. These responses are then clustered using
k-means to create a texton map, which encodes the texture
information in the image. I have used K=64 clusters.



2

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8

Fig. 4: Output of PB Lite.



3

C. Brightness Map (B)

Similar to Texton Map, here we cluster the Brightness
values in the image. I have used K=16 clusters.

D. Color Map (C)

Similar to Brightness Map, here we cluster the Color values
in the image. I have used K=16 clusters.

E. Texture, Brightness, and Color Gradients (Tg , Bg , Cg)

The gradients for Texture, Brightness, and Color are cal-
culated by using the χ2 formula as shown in the equation 2
[1]. where K is the number of clusters or bins. g i and hi are
two half-disk masks. This is done for every filter and then the
average is taken to obtain the gradient.

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi
(2)

F. Pb-lite Output

Once the gradients have been obtained we can get the Pb-lite
output with the gradients and the Canny and Sobel Baselines
using the Eqn. 3 [1]. The weights used in this equation was
w1 = w2 = 0.5. The output of the PB Lite method is shown
in Fig 4. The images are ordered from left to right and top to
bottom.

PbEdges = (Tg+Bg+Cg)3⊙(w1 ·cannyPb+w2 ·sobelPb)
(3)

G. Conclusion
I believe that the output of the Pb-lite is better than the

Canny and Sobel Baselines because:
1) In the canny baseline Though the main boundaries are

clear there is a lot of noise (unnecessary boundaries) in
the image.

2) In the Sobel baseline though there is no noise in most
cases more than half the boundaries are not visible

3) Pb lite combines the advantages of both Canny and
Sobel by giving a complete border for the object (light
in some places) but reduces noise.

4) The weights used were 0.5 for Canny and 0.5 for Sobel.
5) increasing the weight for the Canny Baseline would

result in a more thicker or clearer output but would also
increase the noise.

II. PHASE2
A. 3.3. Train your first neural network

1) Plot of Train Accuracy over Epochs (Fig 5)
2) Plot of Test Accuracy over Epochs (Fig 6)
3) Number of Parameters in Model: 8
4) Plot of loss over Epochs (Fig 7)
5) An Image of the architecture (Fig 8)
6) Optimizer chosen: Adam Optimizer. Learning Rate =

1e− 5
7) Batch size chosen: 64

Fig. 5: Train Accuracy over Epoch.

Fig. 6: Test Accuracy over Epoch.

8) Number of Epochs: 50
9) Confusion Matrix of the trained model on training data

(Table I)
Accuracy: 56.812

10) Confusion Matrix of the trained model on testing data
(Table III)
Accuracy: 55.949

B. 3.4 Improving Accuracy of your neural network

• Plot of Train Accuracy over Epochs (Fig 9
• Plot of Test Accuracy over Epochs (Fig 10)
• Number of Parameters in your model: 20
• Plot of loss over Epochs (Fig 11)
• An Image of the architecture (Fig 12)
• Optimizer chosen: Adam. Learning Rate = 1e− 5
• Batch size chosen: 64 (first half of epochs) / 128 (second

half of epochs)
• Confusion Matrix of the trained model on training data

Accuracy: 47.17%
• Confusion Matrix of the trained model on testing data

(Table IV) Accuracy: 46.584
• A detailed analysis of all the tricks used.

To improve Accuracy I have done the following
1) Normalize Data.

Fig. 7: Train Loss over Epoch.



4

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 3121 184 271 121 102 84 85 123 609 298
(1) 211 3316 24 61 27 36 122 107 251 841
(2) 420 63 1913 345 651 510 528 355 104 108
(3) 102 52 326 1942 336 1118 579 305 81 159
(4) 213 37 492 306 2282 346 589 566 69 98
(5) 40 42 346 866 268 2568 261 473 45 90
(6) 40 55 275 328 419 163 3426 141 49 103
(7) 95 44 170 281 413 415 129 3200 44 208
(8) 576 283 77 86 60 67 55 38 3414 343
(9) 244 720 45 111 37 66 165 192 204 3215

TABLE I: Confusion Matrix for Train

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 621 33 62 27 18 19 30 16 121 51
(1) 46 640 9 11 4 6 19 25 60 179
(2) 75 12 368 72 134 109 106 81 24 18
(3) 24 10 64 378 69 222 118 60 13 39
(4) 34 8 111 71 432 81 124 109 18 12
(5) 11 4 76 162 55 511 51 101 16 10
(6) 8 7 52 65 70 40 701 25 8 24
(7) 19 3 32 60 75 85 35 633 12 43
(8) 112 54 13 19 12 10 12 17 676 72
(9) 52 135 11 18 9 14 34 48 53 626

TABLE II: Confusion Matrix for Test

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 1336 144 635 738 288 18 230 143 1148 318
(1) 77 2597 147 262 170 10 394 37 392 910
(2) 90 36 2283 1141 655 230 221 114 181 46
(3) 11 20 312 3396 359 307 375 75 107 38
(4) 50 9 1152 949 2164 125 253 166 89 41
(5) 5 14 526 2122 451 1439 260 115 51 16
(6) 7 30 509 1224 695 57 2350 12 93 22
(7) 22 21 397 886 962 369 259 1960 50 73
(8) 138 154 183 389 94 17 96 49 3468 411
(9) 98 610 173 412 180 37 513 129 263 2584

TABLE III: Confusion Matrix for Test

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 275 19 124 149 51 2 60 25 232 61
(1) 22 508 36 49 26 3 76 6 86 187
(2) 28 5 423 240 118 53 58 25 39 10
(3) 2 7 76 644 83 72 64 15 24 10
(4) 14 4 221 216 426 31 44 21 20 3
(5) 2 3 104 418 98 284 42 22 16 8
(6) 2 4 93 239 142 14 488 1 13 4
(7) 3 4 73 178 189 76 53 402 5 14
(8) 30 35 35 79 24 4 13 11 693 73
(9) 19 125 21 94 31 3 95 33 71 508

TABLE IV: Confusion Matrix for Test on Improved Model

2) Augment Data by adding a RandomHorizontalFlip
and RandomCrop.

3) Trained by updating Minibatch Size. First 25 epochs
had minibatch size as 64 while the next 25 epochs
had minibatch size as 128.

4) Added Batch Normalization after each Convolution
Layer.

5) Added 2 Fully Connected Layers before Output
layer.

C. 3.5.1 ResNet

• Plot of Train Accuracy over Epochs (Fig 13)
• Plot of Test Accuracy over Epochs (Fig 14)
• Number of Parameters in your model: 122
• Plot of loss over Epochs (Fig 15)
• An Image of the architecture (Fig 16)
• Optimizer chosen: Adam with Learning Rate = 1e− 5
• Batch size chosen: 64
• Confusion Matrix of the trained model on training data

(Table V Accuracy: 52.79%
• Confusion Matrix of the trained model on testing data



5

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 2613 195 227 129 337 281 114 52 782 268
(1) 384 3488 92 57 61 44 103 47 239 481
(2) 281 109 1557 627 1102 524 300 234 140 123
(3) 116 81 349 2192 416 995 421 274 78 78
(4) 141 79 422 495 2717 250 291 430 83 90
(5) 52 64 348 1044 490 2290 166 446 38 61
(6) 30 83 340 654 795 145 2725 108 39 80
(7) 95 67 219 287 698 429 98 2948 28 130
(8) 779 265 96 119 157 140 85 21 2815 522
(9) 311 797 106 117 88 149 106 122 161 3042

TABLE V: Confusion Matrix for Train

(Table VI Accuracy: 47.05%

D. 3.5.2 ResNeXt

• Plot of Train Accuracy over Epochs (Fig 17)
• Plot of Test Accuracy over Epochs (Fig 18)
• Number of Parameters in your model: 320
• Plot of loss over Epochs (Fig 19)
• Plot of Test Accuracy over Epochs (Fig 19)
• An Image of the architecture (Fig 20) [4]. As Netron

produced too big an image I had to get the architecture
from the paper.

• Optimizer chosen: Adam Optimizer with Learning Rate
1e− 5

• Batch size chosen: 64
• Confusion Matrix of the trained model on training data

(Table VII)
• Confusion Matrix of the trained model on testing data

(Table VIII Test Accuracy: 21.95%

E. 3.5.3 DenseNet

I have been unable to debug the error I got while Training
the DenseNet. It has Something to do with the shape I Believe.

F. Conclusion

From Table IX we can see that the performance increases
till ResNet and for ResNeXt it starts decreasing. This can be
that after ResNet the model has become overcomplicated. Also
the train time has increased in proportion to the number of
parameters. Thus it would be better to choose between the
Improved Base Model and ResNet after tuning the model and
training it till there is no improvement rather than a limited
number of epochs.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] R. . R. Perception and M. Learning, “Rbe 549 spring 2024 - homework 0,”
https://rbe549.github.io/spring2024/hw/hw0/#report, accessed: Jan 2024.

[2] U. o. O. Visual Geometry Group. (Year of Access) Texture
classification using convolutional neural networks. [Online]. Available:
https://www.robots.ox.ac.uk/∼vgg/research/texclass/filters.html

[3] W. contributors, “Gabor filter,” https://wikipedia.org/wiki/Gabor filter,
accessed: Jan 2024.

[4] S. Zagoruyko and N. Komodakis, “Aggregated residual transformations
for deep neural networks,” arXiv preprint arXiv:1611.05431, 2016.

https://rbe549.github.io/spring2024/hw/hw0/#report
https://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
https://wikipedia.org/wiki/Gabor_filter


6

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 481 37 61 31 62 66 22 6 178 54
(1) 92 606 25 11 13 7 34 15 54 142
(2) 66 17 268 127 230 109 64 59 28 31
(3) 21 26 87 362 104 210 87 60 21 19
(4) 30 15 89 110 484 57 78 105 12 20
(5) 15 5 62 223 95 420 32 120 11 14
(6) 6 14 74 148 151 29 516 21 11 30
(7) 22 12 63 76 140 107 20 509 8 40
(8) 172 67 23 23 33 27 22 4 516 110
(9) 79 179 18 34 18 28 22 34 53 535

TABLE VI: Confusion Matrix for Test on Resnet Model

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 1201 493 383 269 163 160 121 565 780 863
(1) 383 1472 240 264 228 256 415 503 200 1035
(2) 272 173 1074 910 529 608 394 479 172 386
(3) 158 256 568 1044 429 824 640 581 74 426
(4) 184 155 964 1093 710 640 486 391 91 284
(5) 135 226 665 863 447 1064 640 629 50 280
(6) 91 168 711 1180 624 601 995 332 30 267
(7) 218 266 536 615 508 505 419 1470 70 392
(8) 715 795 248 261 127 178 70 379 979 1247
(9) 361 988 257 210 201 169 246 874 172 1521

TABLE VII: Train Confusion Matrix for ResNeXt Model

Predicted
Actual (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 210 100 86 53 22 48 25 120 176 158
(1) 80 261 62 70 50 59 71 114 43 189
(2) 61 34 210 177 102 117 84 99 38 77
(3) 42 61 111 197 80 163 125 127 13 78
(4) 33 27 195 235 128 136 96 86 11 53
(5) 22 42 119 185 89 219 98 155 19 49
(6) 21 32 152 213 130 141 198 49 5 59
(7) 38 53 90 125 99 102 85 308 10 87
(8) 139 144 53 56 35 41 22 75 175 257
(9) 63 224 37 51 45 35 50 171 38 286

TABLE VIII: Test Confusion Matrix for ResNeXt Model

Model Number of Parameters Final Train Accuracy Final Test Accuracy Inference Run-Time (min) Epochs
Base 8 56.812 55.959 13 50

Improved Base 20 47.17 46.584 20 50
ResNet 122 52.79 47.05 120 20

ResNeXt 320 23.067 21.95 195 20

TABLE IX: Model Comparison



7

Fig. 8: Model Architecture.

Fig. 9: Train Accuracy over Epoch for Improved model.

Fig. 10: Test Accuracy over Epoch for Improved model.

Fig. 11: Train Loss over Epoch for Improved model.



8

Fig. 12: Improved Model Architecture.

Fig. 13: Resnet Train Acc.

Fig. 14: Resnet Test Acc.

Fig. 15: Resnet Loss.



9

Fig. 16: Resnet Architecture.

Fig. 17: ResNeXt Train Accuracy Over Epoch

Fig. 18: ResNeXt Test Accuracy Over Epoch

Fig. 19: ResNeXt Loss Over Epoch



10

Fig. 20: ResNeXt Loss Over Epoch


	Phase1
	Filter Banks:
	Texton Map (T)
	Brightness Map (B)
	Color Map (C)
	Texture, Brightness, and Color Gradients
	Pb-lite Output
	Conclusion

	Phase2
	3.3. Train your first neural network
	3.4 Improving Accuracy of your neural network
	3.5.1 ResNet
	3.5.2 ResNeXt
	3.5.3 DenseNet
	Conclusion

	References

