
Alohomora!
Computer Vision (RBE549) Homework 0

Tejas Rane
MS Robotics Engineering

Worcester Polytechnic Institute
turane@wpi.edu

I. PHASE 1: SHAKE MY BOUNDARY

The first part of the assignment explores classical methods
in computer vision for boundary detection. I present a detailed
analysis of my implementation of the pb (probability of bound-
ary) boundary detection algorithm. Here, we implement its
lite version - ”pb-lite”. The algorithm works by using texture,
brightness and color information to improve the boundary
detection result of the Sobel and Canny baseline. The method
consists of 4 main steps: (1) Filter Bank Generation (2) Texton,
Brightness and Color Map computation (3) Texture, Brightness
and Color Gradients computation, and (4) Boundary Detection.

A. Filter Bank Generation

The first step in the boundary detection algorithm is to
create filter banks so that they can be used to capture texture
information from the input images. In this implementation,
we use three types of filters: Oriented Derivative of Gaussian
(DoG) filters, Leung-Malik filters, and Gabor filters.

1) Oriented Derivative of Gaussian (DoG) Filters: As
mentioned in the problem statement, these filters are created
by convolving a simple Sobel filter and a Gaussian kernel and
then rotating the result. The filter bank generated with 4 scales
and 16 orientations is shown in Figure 1.

Fig. 1: Oriented Derivative of Gaussian (DoG) filters.

2) Leung-Malik (LM) Filters: These are a set of multi scale,
multi orientation filter bank with 48 filters. In this implemen-
tation, we consider two versions of Leung-Malik filter banks.
The Leung-Malik Small filter bank is generated using the
scales σ = {1,

√
2, 2, 2

√
2}, whereas the Leung-Malik Large

filter bank is generated using the scales σ = {
√
2, 2, 2

√
2, 4}

The generated Leung-Malik Small filter bank is shown in
Figure 2, and the generated Leung-Malik Large filter bank
is shown in Figure 3.

3) Gabor Filters: These filters which are approximated
versions of how human visual system works. As mentioned
in the problem statement, a Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave. The filter bank

Fig. 2: Leung-Malik Small (LMS) filters.

Fig. 3: Leung-Malik Large (LML) filters.

generated with 5 scales and 8 orientations is shown in Figure
4.

Fig. 4: Gabor Filters.

B. Texton, Brightness, Color Map Computation

The next step is to filter the input image with each and every
filter in our generated filter bank. Assuming there are N filters
in total in our filter bank, we get an N-dimensional vector as a



response for each pixel after filtering. Then, we use KMeans
clustering on these vectors for all pixels, to get discrete Texton
IDs for each pixel. Replacing each pixel in the image with its
corresponding Texton ID gives us the Texton map. Similarly,
we follow the same process to generate the Brightness and
Color map. For Brightness, we use the grayscale pixel value
and for Color, we use the RGB value of each pixel.

The generated Texton Maps T , Brightness Maps B and
Color Maps C for all the 10 provided images is shown in
Figure 6.

C. Texton, Brightness, Color Gradients Computation
To generate the Texton, Brightness and Color Gradients

from the corresponding maps, we first need to generate half-
disc masks. The half-disc masks are simply (pairs of) binary
images of half-discs. The half-disc masks generated with 3
scales and 8 orientations is shown in Figure 5.

Fig. 5: Half-Disc Masks.

Using these half-disc masks along with the Chi-square dis-
tance, the gradients of the Texton, Brightness, and Color maps
are generated for each input image. The generated Texton
Gradients Tg , Brightness Gradients Bg and Color Gradients
Cg for all the 10 provided images is shown in Figure 7.

D. Boundary Detection
The final step of the boundary detection pipeline is to

combine the Texton, Brightness and Color gradients with the
Sobel and Canny baselines to generate the final output. The
generated pb-lite boundaries for all the 10 provided images is
shown in Figure 8.

E. Analysis
We can see that the pb-lite boundary detection results in

Figure 8 are much more noisy as compared to the Sobel and
Canny baselines. The algorithm is able to detect the subject,
but along with that it also detects many false positives, mainly
related to the texture in the image. In some cases the results
are better compared to the others. For example, the boundary
detection on images 6, 8 and 9 are so noisy that it is difficult
to find the subject in the image. But in case of images 2 and
3, the algorithm is able to detect all the intricate details in the
subject.

Fig. 6: Texton Map T , Brightness Map B, Color Map C for
all images 1 through 10.

F. Future Work

Due to time constraints, I was not able to perform an exten-
sive hyperparameter search. There are multiple parameters in



Fig. 7: Texton Gradients Tg , Brightness Gradients Bg , Color
Gradients Cg for all images 1 through 10.

this implementation which can affect the quality of the final
boundary detection. A thorough study and tweaking of these
hyperparameters can help improve the quality of results. All

Fig. 8: Comparison of the Sobel baseline, Canny baseline and
the pb-lite outputs for all images 1 through 10.

the filters used to generate the corresponding gradients must
be chosen properly, as too many convolutions are creating the
noisy results seen in Figure 8.



II. PHASE 2: DEEP DIVE ON DEEP LEARNING

The second part of the assignment focuses on computer
vision through deep learning. Here, we implement multiple
neural networks to perform image classification. All the neural
networks are trained on the CIFAR-10 dataset, which consists
of 50, 000 training images and 10, 000 testing images.

To be able to compare the performance of all networks with
each other, most of the hyperparameters are kept the same
wherever possible. All the networks are trained for 50 epochs
with a batch size of 128. The optimizer chosen for training is
AdamW with an initial learning rate of 0.001 which is decayed
exponentially with a rate of 0.9, and a regularization strength
(weight decay) of 0.0001. All the networks are implemented
and trained on the WPI Turing Cluster.

A. My first Neural Network

My first network implementation is a simple linear model
with only fully connected linear layers. The network has four
layers and around 37.8M trainable parameters. There are no
dropout, batch normalization layers, or non-linear activation
functions used in this network. This network is implemented
as the most naive approach to image classification using the
simplest form of neural network layers - fully connect linear
layers. A block diagram of the model architecture is shown in
Figure 37. The training and testing loss of this model is shown
in Figure 9, accuracy in Figure 10 and confusion matrices in
Figure 11. This network took about 20 minutes to train.

Fig. 9: Training and Testing Loss of fully connected linear
model.

As it can be seen from Figure 10, the initial model is
able to achieve only about 40% accuracy on the test set. A
linear model with only fully connected layers has multiple
disadvantages when the input data is an image. The biggest
disadvantage is that the fully connected hidden layers cannot
capture the spatial structure of images. Hence, a tiny shift
in the input image can result in an arbitrary large change in

Fig. 10: Training and Testing Accuracy of fully connected
linear model.

the activations of the hidden layers, thus changing the output
drastically.

To overcome these issues, I next implemented a famous
and widely used network architecture for image classification
- VGG191. VGG19 takes advantage of convolutional layers
along with non-linear activation functions like ReLU to gen-
erate better performance with almost the same number of train-
able parameters. The VGG19 model has 19 layers, of which
16 are convolutional layers which represent the encoder, and
3 are fully connected layers. A block diagram of the VGG19
architecture is shown in Figure 38. My implementation of
VGG19 has around 39M trainable parameters. This network
took about 42 minutes for training. Plots comparing training
and testing loss for both the models is shown in Figure 12, and
comparing training and testing accuracy is shown in Figure 13.

As it is evident from the plots, the VGG19 model performs
much better as compared to the fully connected linear model.
We can see in Figure 13 that VGG19 achieves much better
training and testing accuracy as compared to the linear model.
But it also overfits easily to the training data as seen in Figure
12. The confusion matrix for the VGG19 model is shown in
Figure 14.

B. Improving accuracy of the neural network

In the previous section, we saw that the performance of
the VGG19 model for the image classification task is much
better as compared to the fully connected linear model, as
the VGG19 model uses convolutional layers along with non-
linear activation function like ReLU. In this section, we will
employ different strategies to further improve the performance
of VGG19.

1I have implemented and trained the VGG19 models from scratch. No pre-
trained weights have been used.



Fig. 11: Train and Test Confusion Matrix of fully connected
linear model.

1) Adding Batch Normalization: The original VGG19 net-
work did not have any batch normalization layers. But with
advancements made in the field of deep learning, it was
found that adding batch normalization layers improves the
performance of network. Following this, I added the batch
normalization layers in my VGG19 implementation. The num-
ber of trainable parameters increased from 38, 952, 010 to
38, 958, 922. A plot comparing the training and testing loss
of the two models is shown in Figure 15.

As it can be seen from the plot, there is not much improve-
ment in the training loss, but the batch normalization layers
help to curb the overfitting in the model as evident from the
test loss. The confusion matrix for the VGG19 (batchnorm)
model is shown in Figure 16.

Fig. 12: Training and Testing Loss of VGG19 model compared
to the fully connected linear model.

Fig. 13: Training and Testing Accuracy of VGG19 modelcom-
pared to the fully connected linear model.

2) Data Augmentation: From the results and plots till now,
we can see that the VGG19 model easily overfits to the training
data. This is because the number of training examples in the
dataset is far less than the number of trainable parameters
in the model. One way to increase the number of training
examples is to apply data augmentation. I have implemented
data augmentation techniques like horizontally flipping the
image, vertically flipping the image, adding Gaussian noise
and changing the intensity of the image. Results of different
data augmentation methods on a given input image is shown
in Figure 17. A plot comparing the training and testing loss
for the models trained with and without data augmentation is
shown in Figure 18.

From the plots, we can see that the magnitude of loss



Fig. 14: Train and Test Confusion Matrix of VGG19 model.

increases after adding data augmentation, as the number of
training samples increases. But adding data augmentation
helps to control the overfitting in the model.

3) Curriculum Learning: One problem that I came across
while applying data augmentation to the VGG19 models is
that, since I am not using any pre-trained weights, the models
are not able to directly train on the augmented training data.
This effect is more pronounced in the VGG19 model.

To avoid this problem, I devised a curriculum learning
approach, similar to the curriculum employed in schools and
colleges. Students in younger grades are taught easier concepts
as compared to students in older grades who are taught much
complicated and involved concepts. Similarly, a network in the
initial training phase is exposed to easier training data, and the
difficulty of the training data (data augmentation) increases

Fig. 15: Training and Testing Loss of VGG19 and VGG19
(batchnorm) models.

with the training iterations.
I implemented curriculum learning as follows: in the initial

5 epochs, the network is trained on the training data as it is,
without any augmentation. This ensures that all the layers of
the network get a good training start. In the next 5 epochs, the
probability of encountering an augmented training sample is
increased to 20%. Then, in the next 20 epochs the probability
is increased to 50%, and finally in the last 20 epochs, the
probability reaches 80%.

The advantages of using a curriculum for data augmentation
can be seen in the Figures 19, 20, 21, 22. Figure 19 and 20
show that VGG19 model trained with just data augmentation
is not able to learn anything as compared to training with a
curriculum for data augmentation. Similarly, Figures 21 and 22
show that VGG19 (batchnorm) model trained with curriculum
learning gives better performance (both, in terms of lower train
and test loss and higher train and test accuracy) as compared
to training with just data augmentation.

The confusion matrices for all these variants of the VGG19
models is shown in Figures 25, 27, 26, 28.

Finally, after applying all these strategeis to improve the
accuracy of the model, we see that the VGG19 (batchnorm)
model outperforms the VGG19 model in Figures 23 and 24.

C. ResNet, ResNeXt, DenseNet

In an attempt to improve the accuracy and efficiency of the
image classification, ResNet, ResNeXt and DenseNet models
were implemented. I chose to implement the ResNet-342,
ResNeXt-503, and DenseNet-1214 variants of the correspond-
ing models. The total number of trainable parameters for these

2Implementation following this article.
3Implementation following this article.
4Implementation following this article.

https://blog.paperspace.com/writing-resnet-from-scratch-in-pytorch/
https://towardsai.net/p/research/resnext-from-scratch
https://amaarora.github.io/posts/2020-08-02-densenets.html


Fig. 16: Train and Test Confusion Matrix of VGG19 (batch-
norm) model.

networks are around 21.3M for ResNet-34, 23M for ResNeXt-
50 and 7.2M for DenseNet. Block diagrams of these models
is shown in Figures 39, 40 and 41.

Since these network architectures are efficient as compared
to the previously implemented networks, they tend to over-
fit easily on the given training data, even after using data
augmentation and curriculum. To control this overfitting, a
higher regularization strength (weight decay) of 0.001 was
used. The current implementation of DenseNet is very memory
inefficient, which results in GPUs running out of memory.
Hence, for DenseNet, a smaller batch size of 8 was used. This
resulted in a drastic increase in training time - from around
3.5 minutes per epoch for ResNet and 7 minutes per epoch
for ResNeXt to 50 minutes per epoch for DenseNet. Hence,

in order to complete all the trainings in the given time, the
number of epochs for DenseNet was reduced to 15. The total
time required to train ResNet was around 3 hours, for ResNeXt
6 hours, and for DenseNet 13 hours.

The training and testing loss for all these models is shown in
Figure 29 and the accuracy in Figure 30. As it can be observed
in Figure 30, the accuracy curve on both train set and test set
for ResNet and ResNext is very similar. But looking at Figure
29 we see that ResNeXt overfits faster as compared to ResNet.
As for DenseNet, since the training could not be completed
for 50 epochs, the results are sub-optimal. For the initial 15
epochs that it was trained, the accuracy on both sets is lower
than ResNet and ResNeXt.

The training and testing confusion matrices for the corre-
sponding networks is shown in Figures 31, 32 and 33.

D. Analysis

Figures 34 and 35 show the loss and accuracy of all
the models on the test set. Looking at these plots, we can
conclude that strategies like adding batch normalization layers,
data augmentation and curriculum learning definitely help in
improving the accuracy of the models. Models with efficient
architectures like ResNet, ResNeXt and DenseNet achieve
better performance than other models in less number of
epochs, but their training time per epoch is significantly higher.
In my current implementation of all these networks, ResNet34
performs the best on the test set, with around 82% accuracy.
A comparison of all these models in a tabular form is shown
in Figure 36.

E. Future Work

Due to time and compute constraints, I could not perform
an extensive hyperparameter search for all the models. For the
ResNet, ResNeXt and DenseNet models, I could experiment
with only one network architecture. Due to this, the results for
all the models in suboptimal, and not exhaustive.Especially in
case of ResNet and ResNeXt, implementing ResNet-50 and
comparing it with ResNeXt-50 could generate a better com-
parison study. All these hyperparameter tuning and ablation
studies can be conducted to further improve the performance
of each of the models. More data augmentation strategies and
varied curriculum can also be explored.



Fig. 17: Data Augmentation strategies.

Fig. 18: Training and Testing Loss of VGG19 (batchnorm)
model with and without data augmentation.

Fig. 19: Training and Testing Loss of VGG19 model with and
without curriculum for data augmentation.

Fig. 20: Training and Testing Accuracy of VGG19 model with
and without curriculum for data augmentation.

Fig. 21: Training and Testing Loss of VGG19 (batchnorm)
model with and without curriculum for data augmentation.



Fig. 22: Training and Testing Accuracy of VGG19 (batch-
norm) model with and without curriculum for data augmenta-
tion.

Fig. 23: Training and Testing Loss of VGG19 and VGG19
(batchnorm) models after applying all the strategies to improve
accuracy.

Fig. 24: Training and Testing Accuracy of VGG19 and VGG19
(batchnorm) models after applying all the strategies to improve
accuracy.



Fig. 25: Train and Test Confusion Matrix of VGG19 model
trained with data augmentation.

Fig. 26: Train and Test Confusion Matrix of VGG19 model
trained with curriculum learning.



Fig. 27: Train and Test Confusion Matrix of VGG19 (batch-
norm) model trained with data augmentation.

Fig. 28: Train and Test Confusion Matrix of VGG19 (batch-
norm) model trained with curriculum learning.



Fig. 29: Training and Testing Loss for ResNet, ResNeXt,
DenseNet models.

Fig. 30: Training and Testing Accuracy for ResNet, ResNeXt,
DenseNet models.

Fig. 31: Train and Test Confusion Matrix for ResNet-34.



Fig. 32: Train and Test Confusion Matrix for ResNeXt-50. Fig. 33: Train and Test Confusion Matrix for DenseNet121.



Fig. 34: Testing Loss for all models.

Fig. 35: Testing Accuracy for all models.

Fig. 36: Table summarizing all models.

Fig. 37: Block Diagram of fully connected linear model.

Fig. 38: Block Diagram of VGG19 model.



Fig. 39: Block Diagram of ResNet34 model.

Fig. 40: Block Diagram of ResNeXt50 model.

Fig. 41: Block Diagram of DenseNet121 model.


	Phase 1: Shake My Boundary
	Filter Bank Generation
	Oriented Derivative of Gaussian (DoG) Filters
	Leung-Malik (LM) Filters
	Gabor Filters

	Texton, Brightness, Color Map Computation
	Texton, Brightness, Color Gradients Computation
	Boundary Detection
	Analysis
	Future Work

	Phase 2: Deep Dive on Deep Learning
	My first Neural Network
	Improving accuracy of the neural network
	Adding Batch Normalization
	Data Augmentation
	Curriculum Learning

	ResNet, ResNeXt, DenseNet
	Analysis
	Future Work


