
RBE549: Homework0 - Alohomora
Hrishikesh Pawar

Email: hpawar@wpi.edu
Using 2 late days

I. PHASE 1: SHAKE MY BOUNDARY

The primary objective of this phase is to develop a simpli-
fied version of the pb-lite (Probability of Boundary) boundary
detection algorithm. This algorithm computes the likelihood of
each pixel in an image being a part of an edge or boundary. In
addition to the image intensity discontinuities considered in the
classical edge detection algorithms like Canny and Sobel; pb-
lite algorithm considers the texture and colour discontinuities.

The process of implementing the pb-lite algorithm is carried
out in the following steps:

1) Generating sets of filter-banks.
2) Generating Texton, Brightness and Colour maps.
3) Generating Texton, Brightness and Colour gradient

maps.
4) Combining features from the Texton, Brightness and

Colour maps along with the Canny and Sobel baselines
for boundary detection.

A. Generating set of Filter Banks

To extract textural features in an image, filters from 3 sets of
filter banks are used. These filters vary in scale and orientation.
Following 3 filter banks are used.:

1) Oriented Difference of Gaussian (DoG) Filters: These
filters are generated by convolving a Sobel filter with a
Gaussian filter and then rotating the result. The generated filter
with 2 scales and 16 orientations is shown in Fig 1.

2) Leung-Malik (LM) Filters: LM filter bank consists of
48 filters varying in both scale and orientation. The first 36
filters are first-order and second-order derivative of Gaussian
respectively. The first 18 filters (first-order derivatives) consists
3 scales of 6 orientations each. Likewise the next 18 filters
(second-order derivatives) as well. The rest of the 12 filters
consist of 8 Laplaciian of Gaussian filters and 4 Gaussian
filters. This together constitutes the LM filter bank. Two
versions of the LM filter bank are generated:

1) Small LM filter bank with scales σ = {1,
√
2, 2, 2

√
2}.

2) Large LM filter bank with scales σ = {
√
2, 2, 2

√
2, 4}

The first three sclaes are used for generating the first 36 first
and second-order derivative of Gaussians with an elongation
factor of 3 i.e (σx = σ and σy = 3σx). The 8 Laplacian of
Gaussian filters are generated at the four basic scales (σ =
{1,

√
2, 2, 2

√
2} for LM Small) and (σ = {

√
2, 2, 2

√
2, 4} for

LM Large) at σ and 3σ. 4 Gaussian filters are generated are
4 basic scales (σ = {1,

√
2, 2, 2

√
2} for LM Small) and (σ =

{
√
2, 2, 2

√
2, 4} for LM Large).

3) Gabor Filters: Gabor filters are Gaussian kernels mod-
ulated by a sinusoidal plane wave. It is a linear filter used for
texture analysis which emulates filters in human visual system.

Fig. 1: DoG Filter Bank

Fig. 2: LM Small Filter Bank

Fig. 3: LM Large Filter Bank



Fig. 4: DoG Filter Bank

B. Generating Texton, Brightness and Colour maps.

The next step involves applying each filter from the gener-
ated filter banks to the input image. This results in a vector or
responses at each pixel in the image. Therefore, for N filters
we will obtain a vector of dimension N at each pixel. This
essentially can be thought of as encoding the texture properties
of the image.

Following this, the next step is to replace N-dimensional
vector into a distinct texton ID for each pixel. This trans-
formation is achieved by categorizing the filter responses of
each pixel into K distinct textons using the KMeans clustering.
Consequently, each pixel in the image is substituted with its
respective texton ID derived from the clustering, resulting in
the creation of the Texton map (T ). The outcome is a single-
channel image where the pixel values range between 1 and K.
For Texton Map generation, K was set to 64.

Similarly, the brightness and color maps are generated.
The brightness map is generated by clustering the intensity
values. This is achieved by applying KMeans clustering onto
a gray-scale image generating brightness map (B). Likewise
performing KMeans clustering on the standard three-channel
color image yields the Color map (C). For both the brightness
and color maps, a K value of 16 was chosen.

Fig. 5: T , B, and C for image 1.

Fig. 6: T , B, and C for image 2.

Fig. 7: T , B, and C for image 3.

Fig. 8: T , B, and C for image 4.

Fig. 9: T , B, and C for image 5.

Fig. 10: T , B, and C for image 6.

Fig. 11: T , B, and C for image 7.

Fig. 12: T , B, and C for image 8.

Fig. 13: T , B, and C for image 9.



Fig. 14: T , B, and C for image 10.

C. Generating Texton, Brightness and Colour gradient maps.

The creation of the texton, brightness, and color maps
for the input images serves to identify the gradients within
these maps. This is crucial for understanding the areas of
pixel neighborhoods where there are noticeable changes in
texture, intensity, and color attributes. They can be thought
as encoding the texture, brightnesss and color distribution
changes at a pixel. To determine these gradients, we employ
half-disc masks, as depicted in Fig. 35 (opposing directions
of filters at same scale, the left/right pairs are shown one
after another). These masks consist of pairs of binary images
shaped like half-discs and are instrumental in computing the
χ2 distances. Half-disc masks in 8 different orientations and
3 scales were created.

The filtering of the texton, brightness, and color maps
using these masks enables the calculation of the χ2 distances
between two histograms, g and h. This is achieved using the
formula:

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

Employing this method, we obtain the texton gradient map
(Tg), the brightness gradient map (Bg), and the color gradient
map (Cg).

Fig. 15: Tg , Bg , and Cg for image 1.

Fig. 16: Tg , Bg , and Cg for image 2.

Fig. 17: Tg , Bg , and Cg for image 3.

Fig. 18: Tg , Bg , and Cg for image 4.

Fig. 19: Tg , Bg , and Cg for image 5.

Fig. 20: Tg , Bg , and Cg for image 6.

Fig. 21: Tg , Bg , and Cg for image 7.

Fig. 22: Tg , Bg , and Cg for image 8.

Fig. 23: Tg , Bg , and Cg for image 9.



Fig. 24: Tg , Bg , and Cg for image 10.

D. Combining features from the Texton, Brightness and
Colour maps along with the Canny and Sobel baselines for
boundary detection.

The last step is to generate the pb-lite output using the Sobel
and Canny baselines and all the Texture (Tg), Brightness (Bg)
and Color (Cg) gradient maps.The pb-lite out is generated
using the formula:

PbEdges =
Tg + bc + cg

3
◦ (w1 × cannyPb+w2 × sobel(Pb))

w1 and w2 are both 0.5.
The comparison of the pb-lite outputs with the Sobel and

Canny baselines can be seen in Fig

Fig. 25: Sobel, Canny and pb-lite outputs for image 1.

Fig. 26: Sobel, Canny and pb-lite outputs for image 2.

Fig. 27: Sobel, Canny and pb-lite outputs for image 3.

E. Analysis

The pb-lite implementation significantly reduced the false
positives, common with the Sobel and Canny baselines par-
ticularly in images with rich texture information. This sup-
pression is a key-advantage of pb-lite as it targets areas with

Fig. 28: Sobel, Canny and pb-lite outputs for image 4.

Fig. 29: Sobel, Canny and pb-lite outputs for image 5.

Fig. 30: Sobel, Canny and pb-lite outputs for image 6.

Fig. 31: Sobel, Canny and pb-lite outputs for image 7.

Fig. 32: Sobel, Canny and pb-lite outputs for image 8.

Fig. 33: Sobel, Canny and pb-lite outputs for image 9.

Fig. 34: Sobel, Canny and pb-lite outputs for image 10.



Fig. 35: Half-Disc Masks

excessive texture. However, this also seems to lead to a loss of
information making outputs less clear than Canny baselines.
Another observation is that pb-lite not only addresses the
excessive edge detection seen in Canny but also addresses for
the missed information in the Sobel baselines. Additionally,
there is flexibility component to the algorithm given that it
can be fine tuned based on different scales and orientations of
filters in various filter banks.

Despite all the advantages I feel optimizing pb-lite can be
challenging since it requires a lot of tuning in terms of the
scales and orientations of the filter banks and the weights to
get the desired output.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

Using the CIFAR-10 is a dataset a set of networks are
trained. The list of the trained models are as follows:

1) Baseline Network.
2) BatchNorm Network.
3) ResNet
4) ResNeXt.
5) DenseNet.

A. Baseline Network

The architecture of the Baseline Network consists of 4
convolutional layers, 3 fully-connected layers along with max
pooling layers. The network begins with a series of convo-
lutional layers (conv1 to conv4) that progressively ncrease in
depth from 16 to 128 filters, extracting increasingly complex
features. These layers are interspersed with MaxPool2d layers
that reduce the spatial dimensions of the feature maps, enhanc-
ing the network’s ability to focus on important features while
reducing computational complexity. After the convolutional

stages, the network transitions to fully connected layers (fc1 to
fc3) where the flattened output from the convolutional layers
is processed to make final class predictions.

The network was trained for 40 epochs with a batch-size
of 256 with a learning-rate of 1e-3 with SGD optimiser an
Cross-Entropy loss function.

Fig. 36: Baseline Net Performance

Fig. 37: Baseline Train Confusion Matrix

Fig. 38: Baseline Test Confusion Matrix



Fig. 39: Baseline Network Architecture

B. BatchNorm Network

This architecture retains the initial framework of convo-
lutional layers, each followed by a ReLU activation. The
sequence of convolutional layers with increasing filter depth
(from 16 to 128) remains the same. The enhancement in this
version is the inclusion of Batch Normalization layers (bn1
to bn4) following each convolutional layer (conv1 to conv4).
Batch Normalization standardizes the output of each convolu-
tional layer, addressing the problem of internal covariate shift.
The network then transitions to fully connected layers (fc1,
fc2, fc3), where the flattened output from the convolutional
stages is utilised for classification.

The network was trained for 40 epochs with a batch-size
of 256 with a learning-rate of 1e-3 with SGD optimiser an
Cross-Entropy loss function.

Fig. 40: BatchNorm Net Performance

Fig. 41: BatchNorm Train Confusion Matrix

Fig. 42: BatchNorm Test Confusion Matrix



Fig. 43: BatchNorm Network Architecture

C. ResNet Network

The following architecture introduces the residual block.
This block contains two convolutional layers (conv1 and
conv2) each followed by batch normalization. This block
integrates a residual connection that sums the input (residual)
to the output of the convolutional layers. ResNet architecture
is built upon this residual blocks. It begins with an initial con-
volution layer (conv1) and batch normalization (bn1), before
the residual blocks. This model has a sequence of 5 residual
blocks. This enables the model to learn complex features
at various scales while handling the problem of vanishing
gradients. The consequent layers include an adaptive average

pooling layer, followed by a fully connected layer (fc) for
classification.

The network was trained for 40 epochs with a batch-size
of 256 with a learning-rate of 1e-3 with SGD optimiser an
Cross-Entropy loss function.

Fig. 44: ResNet Net Performance

Fig. 45: ResNet Train Confusion Matrix

Fig. 46: ResNet Test Confusion Matrix



Fig. 47: ResNet Network Architecture

D. ResNeXt Network

The implementation of ResNeXt network builds upon the
principle of the ResNet model while incorporating the concept
of cardinality, which defines the number of parallel paths in
each of the ResNeXt block. The current implementation of the
ResNext block consists of a bottleneck design with three con-
volutional layers. The first and the third convolutional layers
(conv1 and conv3) are 1x1 convolutions with an intermediate
3x3 convolutional layer (conv2) in the middle. The novelty
in the ResNeXt block lies in this 3x3 layer, which operates
on grouped convolutions defined by the cardinality parame-
ter, enhancing the network’s ability to learn more complex

features while being computationally efficient. Cardinality for
the current implementation is 16.

In this specific implementation, the ResNeXt model, initial-
izes with a convolutional layer (conv1) followed by batch nor-
malization (bn1) and a max-pooling layer. This is succeeded
by a series of residual blocks organized into four stages, each
stage characterized by a different output feature size (256, 512,
1024, 2048). The number of blocks per stage is uniformly
set to three. Downsampling in the residual blocks ensures
appropriate dimension matching for the shortcut connections.
The network concludes with an adaptive average pooling layer
(avgpool), which aggregates the feature maps to a fixed size,
followed by a fully connected layer (fc) for classification.

The network was trained for 40 epochs with a batch-size
of 256 with a learning-rate of 1e-3 with SGD optimiser an
Cross-Entropy loss function.

The parallel layers defined by cardinality are not visible in
the Netron visualisation in Fig. 51. However the implementa-
tion is see in Fig. 52.

Fig. 48: ResNeXt Net Performance

Fig. 49: ResNeXt Train Confusion Matrix

E. DenseNet Network

This implementation of DenseNet network has a sequence
of DenseBlock and TransitionLayer modules. Each Dense-
Block contains multiple DenseLayer units. In a DenseLayer
the input undergoes batch normalization, followed by a 1x1
convolution for feature reduction. Subsequently, it is processed



Fig. 50: ResNeXt Test Confusion Matrix

through another batch normalization and a 3x3 convolution,
effectively accumulating features throughout the depth of the
block. The TransitionLayer modules interspersed between the
dense blocks serve to compress the feature maps. This is
achieved through a combination of batch normalization, a 1x1
convolution, and average pooling. In this specific implemen-
tation the network starts with an initial convolutional layer
(conv1) and batch normalization (bn1). This is followed by
a series of dense blocks and transition layers as defined by
the block config. The growth rate determining the increase in
feature maps per dense layer is set to 16. After the dense block
the network includes final bach normalization (bn2) and an
adaptive average pooling layer (avgpool) followed by a fully
connected layer (fc).

The network was trained for 40 epochs with a batch-size
of 64 with a learning-rate of 1e-3 with SGD optimiser with
a weight decay parameter of 5e-4 and Cross-Entropy loss
function.

F. Network Comparison

Mostly all the models were trained with the same hyperpa-
rameters for comparing the network architectures. The hyper-
parameters are mentioned in each of the network architecture
sections. Following table summarises the performance of each
network architectures.

Model Parameters Train Accuracy Test Accuracy

BaselineNet 1091614 73.714% 64.37%
BatchNormNet 1092094 82.91% 79.26%
ResNet 2705802 89.96% 85.28%
ResNeXt 20540554 58.71% 55.45%
DenseNet 1763018 95.85% 89.48%

TABLE I: The comparison of all the models.

BaselineNet, shows a decent performance but has the lowest
test accuracy among all models. The gap between training
and test accuracy suggests some overfitting, indicating that the
model struggles to capture the complexities of the CIFAR10

Fig. 51: ResNeXt Network Architecture

dataset. This was addressed partially by the BatchNormNet
with the inclusion of batch normalization layers resulting in
reduced internal covariate shift.

ResNet with its deeper architecture and residual connec-
tions, demonstrates a significant improvement in both training
and test accuracies. Following this, ResNeXt despite its high



Fig. 52: ResNeXt Cardinality

Fig. 53: DenseNet Performance

parameter count showed poor performance. I feel ResNeXt
being a large model should have been trained for a couple
of more epochs. Additionally, a few iterations of different
hyperparameters would have resulted in a better performance.
For instance experimenting with a different learning rate
or using learning rate schedules could have been beneficial
for optimizing. Additionally, regularization techniques, like
dropout or data augmentation, might also have improved the
network’s ability to generalize better.

DenseNet showed the best performance among all models.
Reusing features through dense connections likely contributes
to its high accuracy. Additionally, smaller batch size and

Fig. 54: DenseNet Train Confusion Matrix

Fig. 55: DenseNet Test Confusion Matrix

the weight decay as a regularization technique could have
contributed to more effective training and generalization.


