HWO : Alohomora

Soumik Saswat Patnaik
Dept. of Robotics Engineering,
Worcester Polytechnic Institute
Worcester, MA
email : sspatnaik @wpi.edu
Using 2 late days

Abstract—This report is aimed at presenting my results for
Homework() which introduces the basic concepts of computer
vision for the course RBE/CS 549. The report presents the results
divided into two parts - Phase 1 and phase 2. In phase 1, we created
some of the most commonly used filter banks, namely Derivative of
Gaussian, Leung-Malik Filters, and Gabor Filters, which were used
to capture the texture properties which in turn are used to create a
probability-based edge detector using brightness, color and texture
gradients combined with a weighted sum of the traditional sobel
and canny methods. In phase 2, we build a deep learning model
from scratch to classify images in CIFAR-10 dataset, evaluate it
and improve it. Finally, we also make use of the ResNet, ResNeXt,
DenseNet models to see and evaluate their performance and present
our findings.

I. PHASE 1: SHAKE MY BOUNDARY
A. Filter Banks

Three Banks were created:-

1) Oriented Difference of Gaussian:

Difference of Gaussian (DoG) filters are a set of oriented
filters used in image processing to highlight edges, textures,
and fine details within an image. These filters are created
by subtracting two Gaussian-blurred versions of an image
with different scales, resulting in responses that emphasize
variations in pixel intensities. In the specific context of a
paper, the DoG filter bank comprises filters of size 9x9
at 16 different orientations and across 2 scales (1 and 2).
The rotational invariance of DoG filters is achieved by
convolving a basic Sobel filter and a Gaussian kernel and
subsequently rotating the result. This approach ensures the
effectiveness of the filters in detecting features at different
orientations. DoG filters find applications in edge detection,
object recognition, and feature extraction, serving as a
fundamental tool in various image processing and computer
vision tasks. Figure 1 visually represents these filters,
providing insight into their orientations and scales for a
comprehensive understanding of their impact on image
features.

2) Leung-Malik Filters: The Leung-Malik filter bank is well
known for its adaptability and effectiveness in representing
a wide range of textures. The LM set is a multi-scale, multi-
orientation filter bank with 48 filters. It consists of first
and second derivatives of Gaussians at 6 orientations and
3 scales making a total of 36; 8 Laplacian of Gaussian
(LOG) filters; and 4 Gaussians, enabling the extraction
of texture information across multiple spatial frequencies.

Fig. 1. Oriented DoG Filter Bank

These filters are widely used in computer vision tasks such
as texture classification, segmentation, and pattern recogni-
tion. Their ability to discern texture variations makes them
valuable for applications like medical imaging, satellite
image analysis, and scene understanding. Fig.2 shows the
LM-Filter Bank.

EEANNEEEANNS
ECHANNSNERAANNE

— I NS=~A/II\ >~

.-u : - ~ - . .

Fig. 2. LM Filter Bank

3) Gabor Filters: Gabor filters, essential components in im-
age processing and computer vision, are essentially sine
waves constrained by a Gaussian envelope. As sinusoidal
wavelets, they exhibit an infinite number of zero-crossings
within their domain. The sinusoidal function is bounded by
the Gaussian envelope, ensuring that its amplitude never
surpasses the envelope. Figure 3 visually illustrates Gabor
filters at 5 different scales and 6 orientations, showcasing
their adaptability to capture variations in spatial frequen-
cies and orientations. This combination of sinusoidal and
Gaussian characteristics gives Gabor filters the ability to
effectively represent and respond to specific patterns, mak-

ing them valuable for tasks such as edge detection, texture
analysis, and feature extraction in diverse applications,
including fingerprint recognition and image segmentation.

S S

7

N\

//

I I A
TR

B 22
VA VA VA VA V2

Fig. 3. Gabor Filter Bank

B. Texton, Brightness, Color Maps

Filtering an input image with a filter bank gives a vector
of filter responses centered on each pixel, representing texture
properties. Each N-dimensional vector is replaced with a dis-
crete texton ID obtained through K-means clustering, reducing
the dimensionality to a one-dimensional cluster ID. The number
of clusters K was set to 64. Normalizing the filtered output in the
0-255 range after observing low-intensity values significantly
improved clustering. The texton map, derived from the filter
bank’s responses, distinguishes object boundaries and texture
edges. The implementation involves applying filters, resulting
in N-dimensional vectors at each pixel. K-means clustering
condenses these vectors into a single feature map, providing
contextually rich information about texture. The observation
that filter properties impact output more significantly than the
number of clusters led to optimal results with N=64. Varying
filter sizes influenced the texture map output, emphasizing the
importance of filter characteristics.

The concept of the brightness map is to capture the brightness
changes in the image. Here, again we cluster the brightness
values using kmeans clustering into 16 clusters (K=16). We call
the clustered output as the brightness map B.

The color map is created to capture the chrominance in the
image. Here, again we cluster the RGB color values using
kmeans clustering into 16 clusters (K=16). We call the clustered
output as the color map C.

C. Texton, Brightness, Color Gradients

The changes from one pixel to the neighboring pixel can be
encoded by using texture gradient (g), Brightness gradient (Bg)
and Color gradient (Cg). We compute these by calculating the
Chi2 distance with the help of half-disk filters obtained from
previous calculations which is displayed in Fig. 14.

Fig. 10. Brightness, color,

texton maps for image7.jpg

Fig. 13. Brightness, color, texton maps for imagelO.jpg

D. Pb-Lite Boundary Detection

For the Pb-lite boundary detector, first, we take the canny and
Sobel baselines as input and take a weighted sum of both. Then
we take the average of the Gradients calculated and finally use
the Hadamard operator to get out the final Pb-lite output. The
expression can be written as:-

pb = w ©® (w1 x Canny + w2 x Sobel)

E. Discussion on Pb-Lite output

The final Pb-lite output does a good job reducing of most
of the noise that Canny and sobel contain Owing to its ability
to suppress the false positives that are produced by Canny and
Sobel. However, some of the edges that should be a part of
the output are also suppressed in the process. The different
combinations of weights of canny and Sobel were tried and I
was able to get a bit better performance. However, various other
methods could be tried to achieve better results in this case like
changing the orientation, scales, and size of filter banks and also
allowing dynamics weight allocation.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this phase, we implemented multiple Network Architec-
tures to perform classification tasks on the CIFAR-10 dataset.
The dataset had 10 classes, 50000 training images, and 10000
test images and each image size is 32x32.

LR e d 4 TN
wAHA N NIVNNSPPI (AN

wi A NNV IFI AN

Fig. 14. Half-Disc Filter Bank

Fig. 15. Brightness, color, texton Gradients for imagel.jpg

.
~
3 -

Fig. 16. Brightness, color, texton Gradients for image2.jpg

Fig. 18. Brightness, color, texton Gradients for image4.jpg

Fig. 19. Brightness, color, texton Gradients for image5.jpg

Fig. 20. Brightness, color, texton Gradients for image6.jpg Fig. 26. Sobel, canny, PbLite outputs for image2.jpg

Fig. 27. Sobel, canny, PbLite outputs for image3.jpg

Fig. 22. Brightness, color, texton Gradients for imageS8.jpg Fig. 28. Sobel, canny, PbLite outputs for image4.jpg

Fig. 23. Brighmess, color; texton Gradients for image9.jpg Fig. 29. Sobel, canny, PbLite outputs for image5.jpg

Fig. 30. Sobel, canny, PbLite outputs for imageb6.jpg

Fig. 24. Brightness, color, texton Gradients for imagelO.jpg - -
- - - R —

Fig. 25. Sobel, canny, PbLite outputs for imagel.jpg

A. First Model Architecture (Without Batch Normalization): Fig. 32. Sobel, canny, PbLite outputs for image8.jpg

For the initial CIFAR10 model, I opted for a straightforward
linear neural network setup involving three layers. The input

Fig. 33. Sobel, canny, PbLite outputs for image9.jpg

s @
“
Value Stef
00317 9
09852 9

Smoothed
@ LossPerEpoch_Train 0.1044
® LossPerEpoch Valid 0.991

“
Smoothed Value

@ AccuracyPerEpoch_Train 0.3774 03967

® AccuracyPerEpoch_Valid 03631 03815

(a) Training Accuracy (b) Training Loss

Fig. 35. First Model Architecture (Without Batch Normalization)

layer matched the input dimensions, followed by hidden layers
featuring output sizes of 1024, 512, and 128. To introduce non-
linearity, I applied ReLU activation functions after each linear
layer. However, I chose not to include batch normalization in
this model. This absence of batch normalization may lead to
slower convergence during training, parameters were used to
train the model. However, the absence of batch normalization
could contribute to better generalization, as the model is less
likely to overfit the training data

1) Number of Epochs = 10

2) Mini Batch Size = 128

3) Optimizer: Stochastic Gradient Descent

4) Learning Rate: 0.01

The model achieved a training accuracy of 31% and validation
accuracy of 29%

B. Improved Model Architecture (With Batch Normalization):

In the upgraded CIFAR10 model, I stuck to the same linear
architecture with three layers — the input layer aligned with the
input dimensions and hidden layers having output sizes of 1024,

LossPerEpoch

Run + Smoothed Value

@ LossPerEpoch_Train 06463
@ AccuracyPerEpoch Train 0.8391 @ LossPerEpoch_Valid 1.3815

@ AccuracyPerEpoch_Valid 0.5132

0.8517
05132

13906 9

[

(a) Training Accuracy (b) Training Loss

Fig. 36. Improved Model Architecture (With Batch Normalization)

Confusion Matrix
- 600 PR 4 b 25 3> 3 oh b 143 ol

et NN

Confusion Matrix

£a

Dl
o
L
s
11
]
i

500 , et
_ 400 _3 !-!- i i
; 2. I 100
: o b
H 2 NN

v RSN |
e EamL. |
NSNS

I e ol il i

EEEEEEE

© ® N o U r W N = O

°

2 3456 7 8 9
Predicted label

(b) Confusion matrix improved
model

(a) Confusion matrix basic
model

Fig. 37. Confusion matrix

512, and 128. The game-changer here was the addition of batch
normalization after each linear layer. This tweak significantly
stabilized the training process, leading to quicker convergence
and higher training and validation accuracies. The training and
validation losses(85 % and 55% respectively) showcased a more
prompt and controlled reduction, emphasizing the influence
of batch normalization on training efficiency. However, this
improvement in accuracy came at the cost of overfitting, as
batch normalization can lead to a model being overly adapted
to the training data, resulting in reduced generalizability and
robustness. All other parameters were kept the same as in the
first model.

C. ResNet Model Architechture

Residual Networks, commonly known as ResNets have
played a key role in addressing a critical issue known as the van-
ishing gradient problem. This problem used to limit the depth
of neural networks. The breakthrough idea behind ResNets is
the introduction of shortcut connections, creating direct links
between layers. These shortcuts facilitate smoother flow of
gradients during training, allowing ResNets to successfully train
much deeper models than their predecessors.

The model employs stacked “ResNet blocks,” featuring short-
cut connections that facilitate efficient gradient flow during
training. The architecture comprises four layers of increasing
complexity, progressively extracting intricate features from input
images. The initial convolutional layer and max pooling extract
preliminary features, followed by four residual layers with either
BasicBlock or Bottleneck building blocks (choice affects model

@ LossPerEpoch_Train 0.0345 00317 9
@ LossPerEpoch_Valid 0.984 09852 9

@ AccuracyPerEpoch_Train 1
® AccuracyPerEpoch Valid 0.7435

(a) Training Accuracy

Fig. 38. ResNet Model Architecture

(b) Training Loss

depth and computational cost). Each layer progressively in-
creases feature complexity and downsamples spatial dimensions.
Finally, a fully connected layer maps extracted features to the
desired output classes. Achieved around 98% training accuracy
and 74% validation accuracy.

D. DenseNet Model Architechture

DenseNet, short for Densely Connected Convolutional Net-
work, is a deep learning architecture that aims to address
the vanishing gradient problem and promote feature reuse by
connecting each layer to every other layer in a dense manner.
Unlike traditional convolutional neural networks (CNNs), where
layers are connected sequentially, DenseNet introduces dense
connections, enabling direct communication between layers at
different depths. This design results in highly compact models
that are computationally efficient and exhibit improved pa-
rameter efficiency. I implemented DenseNet architecture called
BottleneckDenseNet. This particular variant uses bottleneck
layers, consisting of 1x1 and 3x3 convolutions, to reduce the
number of parameters and computational cost.

The DenseNet model shows promise with a training accuracy
of 95.43%, indicating it effectively learns from the given data.
However, the validation accuracy of 74.9% raises concerns
about overfitting. This gap suggests the model might memorize
the training data but struggle with generalizing to new examples.
The decreasing loss curves for both datasets imply ongoing
learning, but the consistently higher validation loss reinforces
the overfitting possibility. Implementing early stopping and
regularization techniques could help mitigate this issue and
improve the model’s generalizability.

E. ResNext Model Architechture

ResNeXt is a convolutional neural network (CNN) architec-
ture that builds on the success of ResNet by introducing the
concept of “cardinality,” representing the number of paths within
a block. This innovative approach involves parallel pathways
with different transformations, enhancing model capacity and
feature diversity. ResNeXt’s scalable design allows it to adapt
efficiently to different tasks and datasets, leading to superior
performance in image classification benchmarks. The training
loss and accuracy of Resnext is plotted in Fig. 40

AccuracyPerEpoch LossPerEpoch

[2 4 6 s @

&

Run Value Step Relative
@ LossPerEpoch_Train 02253 9 20.27 min
@ LossPerEpoch_Valid 0.7278 9 20.27 min

Run
@ AccuracyPerEpoch_Train 09543 9
@ AccuracyPerEpoch_Valid 0749 9

| ——]

(a) Training Accuracy

Fig. 39. DenseNet Model Architecture

(b) Training Loss

AccuracyPerEpoch 20

pe
.

Run +
@ AccuracyPerEpoch_Train 0.9835 0.9988 @ LossPerEpoch_Train 0.1044 0.0317 9
@ AccuracyPerEpoch_Valid 0.6764 0.6939 @ LossPerEpoch_Valid 0.991 09852 9

i
(a) Training Accuracy

Fig. 40. ResNext Model Architecture

(b) Training Loss

	Phase 1: Shake My Boundary
	Filter Banks
	Texton, Brightness, Color Maps
	Texton, Brightness, Color Gradients
	Pb-Lite Boundary Detection
	Discussion on Pb-Lite output

	Phase 2: Deep Dive on Deep Learning
	First Model Architecture (Without Batch Normalization):
	Improved Model Architecture (With Batch Normalization):
	ResNet Model Architechture
	DenseNet Model Architechture
	ResNext Model Architechture

