
RBE 549 HW0: Alohamora
Cole Parks

Email: cparks@wpi.edu
Due: 1/12/2024

Using 2 late days

Abstract—This report details the results of the first homework
assignment for Homework 0: Alohomora for RBE 549. In Phase I,
a simple version of pb (probability of boundary) was implemented
through the generation of filter sets from scratch to extract edges
in an image. Phase II was a deep dive into deep learning, with the
creation and analysis of multiple convolutional neural networks
(CNNs) based on the architectures of ResNet, ResNeXt, and
DenseNet.

I. SHAKE MY BOUNDARY

In this section, we implemented a simplified version of the
pb boundary detection algorithm (pb-lite). The output of our
algorithm was a per-pixel probability of boundary, which we
will compare against the Canny and Sobel baselines.

A. Filter Banks

The first step of the pb-lite boundary detection pipeline
is to filter the image with a set of filter banks. We created
three different sets of filter banks for this purpose. Once we
convolved the image with these filters, we generated a texton
map which depicts the texture in the image by clustering
the filter responses. The three filters in the filter bank were
oriented Difference of Gaussian (DoG) filters, Leung-Malik
filters, and Gabor filters.

1) Oriented DoG filters: A simple but effective filter bank
is a collection of oriented Derivative of Gaussian (DoG) filters.
These filters were created by convolving a Sobel filter and a
Gaussian kernel and then rotating the result. The resulting filter
bank had two scales and sixteen orientations, shown in Figure
1 below.

Fig. 1. Oriented DoG Filter Bank.

2) Leung-Malik Filters: The Leung-Malik (LM) filters are
a set of 48 filters with multiple scales and orientations. It
contains first and second order derivatives of Gaussians at
six orientations and three scales, eight Laplacian of Gaussian
(LOG) filters, and four Gaussians. We considered two versions
of the LM filter bank. In LM Small (LMS), the filters occur
at basic scales σ = {1, 2 −

√
2, 2, 2

√
2}. The first and

second derivative filters occur at the first three scales with
an elongation factor of 3, i.e., (σx = σ and σy = 3σx). The

Gaussians occur at the four basic scales while the 8 LOG
filters occur at σ and 3σ. For LM Large (LML), the filters
occur at the basic scales σ = {2 −

√
2, 2, 2

√
2, 4}. The LM

filter bank is shown in Figure 2 below, with LMS being on
the top and LML on the bottom.

Fig. 2. Leung-Malik Filter Bank.

3) Gabor Filters: Gabor Filters are designed based on the
filters in the human visual system. A gabor filter is a gaussian
kernel function modulated by a sinusoidal plane wave. A
sample of gabor filters is shown in Figure 3 below.

B. Texton, Brightness, and Color Maps T

Texton maps are used to depict the texture in the image
by clustering the filter responses. Taking a combination of the
three filter banks, we convolved the image with each filter in
the filter bank. We then clustered the filter responses at all
pixels in the image into K textons using kmeans clustering.
Each pixel was then represented by a one dimensional, discrete
cluster ID (or ”Texton ID”) instead of a vector of high-
dimensional, real-valued filter responses. A similar approach
was used to create brightness and color maps, using either the



Fig. 3. Gabor Filter Bank.

grayscale or RGB color channels respectively. The maps are
shown in Figures 4-13 below.

Fig. 4. T , B, and C for Image 1

Fig. 5. T , B, and C for Image 2

Fig. 6. T , B, and C for Image 3

C. Texture, Brightness, and Color Gradients Tg, Bg, Cg

To obtain Tg, Bg, Cg , we needed to compute differences of
values across different shapes and sizes. This was achieved

Fig. 7. T , B, and C for Image 4

Fig. 8. T , B, and C for Image 5

Fig. 9. T , B, and C for Image 6

Fig. 10. T , B, and C for Image 7

Fig. 11. T , B, and C for Image 8

Fig. 12. T , B, and C for Image 9

very efficiently by the use of Half-disc masks. The half-disc
masks were simply (pairs of) binary images of half-discs. This
was very important because it allowed us to compute the χ2

(chi-square) distances using a using this equation:

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi
(1)

These maps were convolved with the texton, brightness,
and color maps to obtain their respective gradients. The half-
disc masks are shown in Figure 14, with four sizes and eight



Fig. 13. T , B, and C for Image 10

Fig. 14. Half-disc Masks

orientations. The resulting gradients are shown in Figures 15-
24 below.

Fig. 15. Tg , Bg , and Cg for Image 1

Fig. 16. Tg , Bg , and Cg for Image 2

Fig. 17. Tg , Bg , and Cg for Image 3

Fig. 18. Tg , Bg , and Cg for Image 4

Fig. 19. Tg , Bg , and Cg for Image 5

Fig. 20. Tg , Bg , and Cg for Image 6

Fig. 21. Tg , Bg , and Cg for Image 7

Fig. 22. Tg , Bg , and Cg for Image 8

Fig. 23. Tg , Bg , and Cg for Image 9

Fig. 24. Tg , Bg , and Cg for Image 10

D. Pb-lite Output

To improve the edge detection and sharpen the edges, we
combined the information from the features with an average of
the Sobel and Canny baselines using the following equation:

PbEdges =
Tg +Bg + Cg

3
⊙ (0.5 ·cannyPb+0.5 ·sobelPb)

(2)
We chose w1 and w1 to be 0.5, and the resulting pb-lite

images are shown in Figures 25-34 below.



Fig. 25. Pb-Lite output, Canny output, and Sobel output for Image 1

Fig. 26. Pb-Lite output, Canny output, and Sobel output for Image 2

Fig. 27. Pb-Lite output, Canny output, and Sobel output for Image 3

Fig. 28. Pb-Lite output, Canny output, and Sobel output for Image 4

Fig. 29. Pb-Lite output, Canny output, and Sobel output for Image 5

Fig. 30. Pb-Lite output, Canny output, and Sobel output for Image 6

Fig. 31. Pb-Lite output, Canny output, and Sobel output for Image 7

Fig. 32. Pb-Lite output, Canny output, and Sobel output for Image 8

Fig. 33. Pb-Lite output, Canny output, and Sobel output for Image 9

Fig. 34. Pb-Lite output, Canny output, and Sobel output for Image 10

E. Evaluation

The pb-lite filter outperforms the Canny and Sobel baselines
in edge detection for several reasons. Firstly, the pb-lite filter
combines the information from the features using an average of
the Sobel and Canny baselines. This combination allows for a
more comprehensive representation of the edges in the image.
By taking into account both the gradient magnitude and the
gradient direction, the pb-lite filter is able to capture a wider
range of edge features. Secondly, this pb-lite filter applies a
weighting factor to the combined features, with equal weights
given to the Canny and Sobel outputs. This balanced weighting
ensures that both the high-frequency details captured by the
Canny filter and the gradient information captured by the Sobel
filter are properly incorporated into the final edge map. Lastly,
the pb-lite filter produces sharper and more well-defined edges
compared to the Canny and Sobel baselines. This is evident
in the resulting pb-lite images, where the edges are more
pronounced and accurately delineated. The pb-lite filter is able
to enhance the edges by effectively combining the strengths
of the Canny and Sobel filters. Overall, the pb-lite filter
provides a superior edge detection result by leveraging the
complementary strengths of the Canny and Sobel baselines.



II. DEEP DIVE ON DEEP LEARNING

In this section, multiple neural networks architecures were
explored and compared on various criteria.

A. Base/Improved Model

The base model was a simple convolutional neural network
with 4 convolutional layers, 2 max pooling layers, and 2 fully
connected layers. The addition of the max pooling layers,
normalization, and random rotation and cropping after the
initial network improved the accuracy of the network on the
test set. The model structure is shown in Figure 35. The model
was trained for 10 epochs with a batch size of 64 and a learning
rate of 0.001, momentum of 0.8, and with cross-entropy loss
for the loss function. The model has 917750 parameters. The
training accuracy, training loss, and testing accuracies over
epochs are shown in Figures 36, 37, and 38. In addition, the
confusion matrices on training and testing data are in Figures
39 and 40.

Fig. 35. Base Model Architecture

Fig. 36. Base Model Training Accuracy

Fig. 37. Base Model Training Loss

B. ResNet

The ResNet architecture was implemented with four resid-
ual blocks, each with six convolutional layers. The model
structure is shown in Figure 41. Skip connections were added
between the convolutional layers to avoid vanishing gradients
and allow for deeper networks. The model was trained for 15
epochs with a batch size of 64, with cross-entropy loss for the
loss function. The model has 1110650 parameters. The training
accuracy, training loss, and testing accuracies over epochs are
shown in Figures 42, 43, and 44. The ResNet architecture
performed marginally better than the base model, with a test
accuracy of 68.6% In addition, the confusion matrices on
training and testing data are in Figures 45 and 46.



Fig. 38. Base Model Training Accuracy

Fig. 39. Base Model Training Confusion Matrix

Fig. 41. ResNet Architecture

Fig. 40. Base Model Testing Confusion Matrix

Fig. 42. ResNet Training Accuracy

Fig. 43. ResNet Training Loss



Fig. 44. ResNet Training Accuracy

Fig. 45. ResNet Training Confusion Matrix

Fig. 46. ResNet Testing Confusion Matrix

C. ResNeXt

The version of ResNeXt implemented had 11 residual
blocks, each with four convolutional layers. The model struc-
ture is shown in Figure 47. Skip connections were added
between the convolutional layers to avoid vanishing gradients
in this deeper network structure. The model was trained for
15 epochs (due to time constraints) with a batch size of 32,
with cross-entropy loss for the loss function. Unfortunately,
the testing accuracy of this model was only 30.36%, but could
have been higher if time allowed for more epochs. The model
has 120410 parameters. The training accuracy, training loss,
and testing accuracies over epochs are shown in Figures 48,
49, and 50. In addition, the confusion matrices on training and
testing data are in Figures 51 and 52. When training ResNeXt,
there were often dimension mismatches between the output of
the residual block and the input to the next residual block. This
was solved by adding a convolutional layer with a kernel size
of 1 and a stride of 2 to the skip connection. This allowed
the output of the residual block to be the same size as the
input to the next residual block. Also, a deeper network than
ResNet was implemented to try to improve the accuracy of the
network, but this did not end up yielding any better results.

D. DenseNet

The densenet architecture was implemented where outputs
of each convolutional layer are passed to future layers. Unfor-
tunately, the testing accuracy of this model was only 10.3%,
showing that the model did not learn, just picking one of two
classes for all images. The model had 46378 parameters, and
was trained with a batch size of 16 due to GPU memory
constraints. The model was trained for 15 epochs, and used
cross-entropy loss for the loss function. The training accuracy,
training loss, and testing accuracies over epochs are shown in
Figures 53, 54, and 55. In addition, the confusion matrices on
training and testing data are in Figures 56 and 57.

E. Comparison

Between the basic network, ResNet, ResNeXt, and
DenseNet, ResNet performed the best, with a testing accuracy
of 68.6%. With more time and tuning, the DenseNet could
perform better, since theoretically the increase in connections
between layers should allow for better learning.

Model Parameters Train Accuracy Test Accuracy
Base 917750 88.87% 65.59%

ResNet 1110650 70.15% 68.59%
ResNeXt 120410 29.43% 30.36%
DenseNet 46378 100% 10.3

TABLE I
COMPARISON OF MODELS

REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual
Learning for Image Recognition arXiv:1512.03385v1 [cs.CV] 10 Dec
2015

[2] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming
He Aggregated Residual Transformations for Deep Neural Networks
arXiv:1611.05431v2 [cs.CV] 22 Dec 2016



Fig. 47. ResNeXt Architecture

[3] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
Densely Connected Convolutional Networks arXiv:1608.06993v5 [cs.CV]
26 Jan 2018

Fig. 48. ResNeXt Training Accuracy

Fig. 49. ResNeXt Training Loss

Fig. 50. ResNeXt Training Accuracy



Fig. 51. ResNeXt Training Confusion Matrix

Fig. 52. ResNeXt Testing Confusion Matrix

Fig. 53. DenseNet Training Accuracy

Fig. 54. DenseNet Training Loss

Fig. 55. DenseNet Training Accuracy

Fig. 56. DenseNet Training Confusion Matrix



Fig. 57. DenseNet Testing Confusion Matrix


