
Homework 0 - Alohomora
Karthik Mundanad
Robotics Department

Worcester Polytechnic Institute
Email: krmundanad@wpi.edu

Using 1 late day

Abstract—This report is subdivided into two parts - Phase
1 and Phase 2. Phase 1 deals with Probability of Boundary
(Pb) based Boundary/edge detection which is aimed to improve
the traditional methods of Edge detection such as Canny and
Sobel by incorporating Texture, Brightness and Color of image.
We discuss this in deatil in the next section. The next part
Phase 2 deals with Deep Learning approaches for classification
wherein we particularly discuss Networks such as CNNs, ResNets,
ResNeXt and DenseNet.

I. PHASE - 1 SHAKE MY BOUNDARY

A. Introduction

This section deals with Pb-based Boundary detection. Pb-
based Boundary detection algorithm outperforms traditional
methods such as Canny and Sobel by taking a weighted sum
of these along with other image parameters such as Texture,
Color, and Brightness. The algorithm can be divided into
subparts as follows.

B. Filter Bank Generation

Filter Banks are a set of filters with differences in tuneable
parameters such as size and orientation. We mainly implement
three filter banks that aggregate low-level regional features
such as texture and brightness.

1) Difference of Gaussian (DoG): The Gaussian Kernel is
fundamental in computer vision applications. We generate s×o
sized filter bank DoG by convolving this Gaussian kernel with
Sobel kernel. s is the scale (here 2) and o is orientation (here
8). Figure 1 shows the result for the same

2) Leung-Malik (LM): The LM filter bank is an extensive
filter bank consisting of first and second-order derivatives of
Gaussians at 6 orientations and 3 scales making a total of 36;
8 Laplacian of Gaussian (LOG) filters; and 4 Gaussians. Here,
2 different LM filter banks are generated - LM small (LMS)
and LM large (LML) at two different sets of scales. Both these
are shown by figure 2 and figure 3 respectively.

3) Gabor: Gabor filters are generated by modulating Gaus-
sians with sinusoidal waves of different scales and orientations.
This is represented in figure 4

C. Map Generation

Next, we use the above filters are generate Texton Maps.
In addition, we also generate Brightness and Color Maps for
each image

Fig. 1: DoG Filter Bank

Fig. 2: LM Small Filter Bank

1) Texton Maps T : Texton Map for each image is generated
by applying all the filters (here DoG, LM small and Gabor) on
the image. This results in an N-dimensional vector response
consisting of the textural information for each image where N
is the number of filters. To encode this vector and assign an
ID - called the Texton ID we use KMeans Clustering which
results in a Texton map. (Note K here is 64)

Fig. 3: LM large Filter Bank



Fig. 4: Gabor Filter Bank

2) Brightness Maps B: To generate the Brightness Maps,
we cluster the intensity using KMeans (K = 16) after convert-
ing the image to grayscale.

3) Color Maps C: Similar to Brightness Maps, we get
the Color map for each image by clustering the image using
KMeans (K =16).

The Texton, Brightness, and Color Maps are shown in
Figures 5 - 14

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 5: Maps for Image-1

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 6: Maps for Image-2

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 7: Maps for Image-3

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 13: Maps for Image-9

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 8: Maps for Image-4

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 9: Maps for Image-5

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 10: Maps for Image-6

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 11: Maps for Image-7

(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 12: Maps for Image-8

D. Gradient Generation

Once we have the maps, we need to find how these
factors (texture, brightness, color) change in the image. For
this, we calculate the gradients corresponding to each of the
maps. These can be generated by looping over neighbors of
each pixel but that’s not optimal. Instead, we use halfmasks
shown in Figure 15. These are complementary masks that are
applied to masks and generate the two sets of aggregated
histograms. The chi-square distance between the histogram
gives the change of texture, brightness, and color. The higher
the difference, the higher the change. The gradient maps (Tg ,
Bg , Cg) are shown for all images from figure 16 - 25



(a) Texton Map (b) Brightness Map (c) Color Map

Fig. 14: Maps for Image-10

Fig. 15: Half Disk Makss

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 16: Gradients for Image-1

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 17: Gradients for Image-2

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 18: Gradients for Image-3

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 23: Gradients for Image-8

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 19: Gradients for Image-4

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 20: Gradients for Image-5

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 21: Gradients for Image-6

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 22: Gradients for Image-7



(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 24: Gradients for Image-9

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 26: Comparison of Sobel, Canny and PB based Edge
Detection for Image-1

(a) Texton Gradient (b) Brightness Gradi-
ent

(c) Color Gradient

Fig. 25: Gradients for Image-10

1) Combining Sobel, Canny, and Gradients for Edge De-
tection: Now to detect boundaries, we take the weighted sum
of Sobel and Canny’s results and multiply this by the mean of
the three gradients. Here we have assigned Sobel and Canny
edges equal weights. This resultant Pb boundary is given by

PB =
Tg + Bg + Cg

3
⊙ (w1 · S + w2 · C) (1)

The resultant Canny, Sobel and PB images are shown in
Figures 26-35

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 27: Comparison of Sobel, Canny and PB based Edge
Detection for Image-2

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 28: Comparison of Sobel, Canny and PB based Edge
Detection for Image-3

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 29: Comparison of Sobel, Canny and PB based Edge
Detection for Image-4

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 30: Comparison of Sobel, Canny and PB based Edge
Detection for Image-5

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 31: Comparison of Sobel, Canny and PB based Edge
Detection for Image-6

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 32: Comparison of Sobel, Canny and PB based Edge
Detection for Image-7

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 33: Comparison of Sobel, Canny and PB based Edge
Detection for Image-8



(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 34: Comparison of Sobel, Canny and PB based Edge
Detection for Image-9

(a) Canny Baseline (b) Sobel Baseline (c) PB result

Fig. 35: Comparison of Sobel, Canny and PB based Edge
Detection for Image-10

E. Conclusion

Although it might seem that PB edges are not legible,
it is because it is producing fine edges for the object(s)
in focus. Thus we can see that it suppresses are lot of
unwanted background edges produced in Canny and Sobel.
The performance can even be improved by tuning the weights
for Sobel and Canny, producing texton maps using diverse
filter banks, etc. Thus this fine tuning can allow us to produce
desired results.

II. PHASE 2 - DEEP LEARNING

In this section, Deep Learning models on the CIFAR-10
Dataset are discussed. We implement a classification task on
the CIFAR-10 dataset which contains 50,000 training and
10,000 testing images of size 32x32 belonging to 10 classes.
There are several networks implemented for the same which
will be discussed in the next sections

A. Convolution Neural Networks

Firstly, I implemented a CNN with 5-layer CNN with 2
convolution blocks and 3 linear layers. Cross Entropy Loss and
Adam Optimizer were used for training. The hyperparameters
including a number of epochs, batch size, and learning rate
(LR) are shown in Table I. The number of parameters chosen
for the implementation and the results for Train Loss, Train
Accuracy, and Test Accuracy are also given in Table II.

Epochs Batch Size L.R Parameters
30 64 0.001 125,482

TABLE I: Parameters and Network details for CNN

(a) Architecture Overview (b) Netron Architecture

Fig. 36: Architecture for CNN based Classifier

Train Loss Train Acc Test Acc
0.6467 81.25 63.96

TABLE II: Training and Testing Results for CNN

The plots for architecture and Netron details are attached
below in Figure 36.

The variation of training loss, training accuracy, and testing
accuracy with epochs is given in Figure 37 - 44



Fig. 37: Training loss vs Epochs for CNN

Fig. 38: Training accuracy vs Epochs for CNN

Fig. 39: Testing loss vs Epochs for CNN

Fig. 40: Testing accuracy vs Epochs for CNN

The confusion matrix is given in figure 41 and 42

Fig. 41: Training Confusion matrix for CNN

Fig. 42: Testing Confusion matrix for CNN

B. Improved CNN

I added BatchNorms after each convolution block and
implemented horizontal flip as well as normalization on the
data to improve. The horizontal flips did not yield better
outputs as they gave 75.2% training accuracy and 47% testing
accuracy. So I only took into account the BatchNorms and
have presented the results for the same. The Table III and
Table IV show the parameters and results.

Epochs Batch Size L.R Parameters
30 64 0.001 125,538

TABLE III: Parameters and Network details for CNN

Train Loss Train Acc Test Acc
0.8025 90.3 71.37

TABLE IV: Training and Testing Results for CNN

The architecture is given Figure 43.



Fig. 43: Training accuracy vs Epochs for new CNN

The variation of training loss, training accuracy, and testing
accuracy with epochs is given in Figure 44 - 47.

Fig. 44: Training loss vs Epochs for New CNN

Fig. 45: Training accuracy vs Epochs for new CNN

Fig. 46: Testing loss vs Epochs for new CNN

Fig. 47: Testing accuracy vs Epochs for new CNN

The confusion matrix is given in figure 48 and 49

Fig. 48: Training Confusion matrix for new CNN

Fig. 49: Testing Confusion matrix for new CNN

C. ResNet

For the ResNet Implementation, I looked up the PyTorch
implementation but the layers vary from the original imple-
mentation. There are 2 skip connections and the tables below
show the data as above.



Epochs Batch Size L.R Parameters
30 64 0.001 1,417,994

TABLE V: Parameters and Network details for ResNet

Train Loss Train Acc Test Acc
0.4628 82.81 76.01

TABLE VI: Training and Testing Results for ResNet

The snippet of architecture from torchview and netron are
also provided in figure 50.

(a) Architecture Overview (b) Netron Archi-
tecture

Fig. 50: Architecture for ResNet based Classifier

The variation of training loss, training accuracy, and testing
accuracy with epochs is given in Figure 51 - 54

Fig. 51: Training loss vs Epochs for ResNet

Fig. 52: Training accuracy vs Epochs for ResNet

Fig. 53: Testing loss vs Epochs (20) for ResNet

Fig. 54: Testing accuracy vs Epochs (20) for ResNet

The confusion matrix is given in figure 55 and figure 56

Fig. 55: Training Confusion matrix for ResNet



Fig. 56: Testing Confusion matrix for ResNet

D. ResNeXt

For the ResNeXt architecture, which is as shown in Figure
57. My implementation includes the same cardinality of 32 and
I have used the grouping twice in the network. The parameters
are shown in Table VII and results in VIII.

Fig. 57: Reference Architecture for ResNeXt

Epochs Batch Size L.R Parameters Card.
20 64 0.001 531,210 32

TABLE VII: Parameters and Network details for ResNeXt

Train Loss Train Acc Test Acc
0.2258 87.29 79.05

TABLE VIII: Training and Testing Results for ResNeXt

The snippet of architecture from torchview and netron are
also provided in figure 58. The architecture doesn’t show the
split in groups because of torch view limitations but comparing
the torch and netron images shown, we can understand that
there is a block dividing the incoming channels to outgoing
channels as shown.

The variation of training loss, training accuracy, and testing
accuracy with epochs is given in Figure 59 - 62

(a) Architecture Overview (b) Netron Architecture

Fig. 58: Architecture for ResNeXt based Classifier

Fig. 59: Training loss vs Epochs for ResNeXt

Fig. 60: Training loss vs Epochs for ResNeXt



Fig. 61: Testing loss vs Epochs for ResNeXt

Fig. 62: Testing accuracy vs Epochs for ResNeXt

The confusion matrix is given in figure 63 and figure 64

Fig. 63: Training Confusion matrix for ResNeXt

Fig. 64: Testing Confusion matrix for ResNeXt

E. DenseNet

For the Denset architecture, I referred to the PyTorch
implementation. I have kept the growth rate as 12 and the
number of dense blocks as 2 of 6 and 12 layers each and 1
transition layer. In my bottleneck, I have directly reduced to

k(growth rate) channels instead of upsampling to 4*k channels
and then k channels as traditionally done. This was to reduce
the parameters. The parameters are shown in Table VII and
results in VIII.

Epochs Batch Size L.R Parameters Growth Rate
20 64 0.001 253,070 12

TABLE IX: Parameters and Network details for DenseNet

Train Loss Train Acc Test Acc
0.1831 95.69 81.31

TABLE X: Training and Testing Results for DenseNet

The snippet of architecture from torchview and netron are
also provided in figure 65

(a) Architecture Overview (b) Netron Architecture

Fig. 65: Architecture for DenseNet based Classifier

The variation of training loss, training accuracy, and testing
accuracy with epochs is given in Figure 66 - 69



Fig. 66: Training loss vs Epochs for DenseNet

Fig. 67: Training accuracy vs Epochs for DenseNet

Fig. 68: Testing loss vs Epochs for DenseNet

Fig. 69: Testing accuracy vs Epochs for DenseNet

The confusion matrix is given in figure 70 a and 71

Fig. 70: Training Confusion matrix for DenseNet

Fig. 71: Testing Confusion matrix for DenseNet

F. Conclusion

From the above graphs, confusion matrix and parameter
comparison, I conclude that DenseNet performed better in
terms of its accuracy even though it had far fewer parameters
compared to ResNeXt and ResNet. It significantly outper-
formed traditional CNNs as it was deeper and preserving the
information by concatenating the previous channels. Adding
BatchNorms improved CNNs but it had limitations towards
the end as it was not get higher testing accuracy as epochs
increased. ResNet and ResNeXt seemed to perform slightly
better compared to CNN but the there were lot more parame-
ters resulting in higher inference time. ResNeXt performed
better to ResNet even though it was not as deep and had
less parameters. To conclude DenseNet was the most suitable
architecture and it can be further improved by deeper CNN
blocks in it. The table

Epochs Parameters Training Acc. Testing Acc. Inf. Time(s)
CNN 30 125,482 81.25 63.96 0.0010

New CNN 30 125,538 90.3 71.27 0.0013
ResNet 20 1,417,994 82.81 76.01 0.020

ResNeXt 20 531,210 87.29 79.05 0.008
DenseNet 20 253,070 95.69 81.31 0.003

TABLE XI: Parameters and Network details for DenseNet


