RBE 549- HomeWork(O :Alohomora

Ankit Mittal
Department of Robotics Engineering
Worcester Polytechnic Institute
Email: amittal @wpi.edu

Abstract—(USING 1 LATE DAY) This report outlines the
outcomes of two distinct phases in image processing and analysis.
Phase I focuses on traditional methods for edge detection, delving
into the creation of various filter kernels through mathematical
equations and associated techniques. These kernels are then
applied to extract edges from images. Phase II shifts to modern
approaches in object classification, emphasizing the use of deep
Convolutional Neural Networks (CNNs). This phase involves the
implementation of various models and provides an in-depth
analysis of their performance.

I. PHASE 1: SHAKEN MY BOUNDARY

A. Introduction

In this section, we will create a streamlined version of the pb
lite algorithm. This algorithm detects boundaries by analyzing
data on brightness, color, and texture at various scales, ac-
commodating different object sizes and image dimensions. The
result of this process will be a probability of boundary assigned
to each pixel.The initial stage of the process involves applying
a series of filter banks to the image. Following this filtration,
a texton, along with brightness and color maps, are produced
by clustering the responses from these filters. Subsequently,
the image gradients are computed to display the variations
in texture, brightness, and color at each pixel. In the final
step, these gradient outcomes are integrated with the Sobel
and Canny baseline methods, employing specific weights, to
achieve the desired result.

B. Generating Filters Blanks

To analyze the texture of an image, we will employ three
distinct sets of filter banks. After applying these filters to
the image, we will create a texton map. This map visually
represents the image’s texture by grouping together similar
responses from the filters.

1) Oriented DoG filters: A simple but effective filter bank
is a collection of oriented Derivative of Gaussian (DoG) filters.
These filters can be created by convolving a simple Sobel filter
and a Gaussian kernel and then rotating the result.

Fig. 1: Generated DoG filter

2) Leung-Malik Filters: The Leung-Malik filters or LM
filters are a set of multi scale, multi orientation filter bank with
48 filters. It consists of first and second order derivatives of
Gaussians at 6 orientations and 3 scales making a total of 36; 8
Laplacian of Gaussian (LOG) filters; and 4 Gaussians. In LM
Small (LMYS), the filters occur at basic scales o =1,v/2.2,21/2.
The first and second derivative filters occur at the first three
scales with an elongation factor of 3, i.e., (cx=0 and ocy=30X).

EEANNNEEEANNE
EENNNEEAANSEE
EENEERRAANEE
BRREEEEol | -]

Fig. 2: Generated LM filter

3) Gabor Filters: Gabor Filters are designed based on the
filters in the human visual system. A gabor filter is a gaussian
kernel function modulated by a sinusoidal plane wave. The
Gabor filter is a linear filter used for texture analysis, which
essentially means that it analyzes whether there is any specific
frequency content in the image in specific directions in a
localized region around the point or region of analysis.

EEIZININEE
EEZNNNEE
SEEDnEES
ST TTINEITIS
NEZE

Fig. 3: Generated LM filter

C. Texton, Brightness, and Color Map

Texton maps are generated by applying a comprehensive
set of 120 filters to an image, which results in a collection of



output layers. The objective is to classify pixels with sir
texture characteristics together and assign a unique texto

to each. This classification is achieved through the KM
clustering technique, where pixels with comparable value
grouped into the same cluster. For this process, we use o4
distinct cluster centers to categorize each pixel. Similar to the
texton map, brightness maps and color maps are also prod

for the same image. The brightness map is derived fron
gray-scale version of the original image, while the color

is created using the RGB (Red, Green, Blue) version o
image.16 clusters are used in case of both brightness and color
maps.

(c) Texton, brightness and color map of image 10

Fig. 5: Texton, brightness and color map

(b) Texton, brightness and color map of image 2

(\Cy C (@ = S

D. Texton, Brightness, and Color gradients

To compute the Texton, Brightness, and Color gradients we
need to compute differences of values across different shapes
and sizes. This can be achieved very efficiently by the use
of Half-disc masks. The half-disc masks are simply (pairs of)

(¢) Texton, brightness and color map of image 3 binary images of half-discs. This is very important because
e (Y ¥ it will allow us to compute the chi-square distances (finally

Rt obtain values of Ty,B,,C,) using a filtering operation, which
is much faster than looping over each pixel neighborhood and
aggregating counts for histograms. Forming these masks is
quite trivial. A set of masks generated (8 orientations, 3 scales)
is shown in Fig.

ol Y I A P LA
OO N O i T
d 7. AV AV,
A YA Y
. AV AV
(YA YA N

Fig. 6: Half disc mask

(g) Texton, brightness and color map of image 7



e
Sl 2

)\
d
Chea VT ,

B .."‘ (\‘v‘ :l‘('»" -‘7' | 4 ". RTINS an
\««93.0',\)\‘5‘10 fia A

el s el T
P - R T - - - - “‘.K:’ - —
’EI\"?\\;K7 ‘ { fZ}”\m\)

N P

(j) Texton, brightness and color gradients of image 10

E. Pb-lite Output

The final step is to combine information from the features
with a baseline method (based on Sobel or Canny edge
detection or an average of both) using a simple equation

(Ty + By + Cy)

PyEdges = 3

o(wy *cannny Pb+wsxsobel Pb)

Hereo is the Hadamard product operator. And wi, ws
is choosen as 0.5 The comparisonbbetween Canny baseline,
Sobel baseline and Pb-lite output is shown below.

(a) Canny, Sobel and Pb-lite of image 1

(b) Canny, Sobel and Pb-lite of image 2

(c) Canny, Sobel and Pb-lite of image 3

(d) Canny, Sobel and Pb-lite of image 4

(e) Canny, Sobel and Pb-lite of image 5

(f) Canny, Sobel and Pb-lite of image 6

(g) Canny, Sobel and Pb-lite of image 7




(a) Canny, Sobel and Pb-lite of image 8

(b) Canny, Sobel and Pb-lite of image 9

(c) Canny, Sobel and Pb-lite of image 10
Fig. 9: Canny, Sobel and Pb-lite

F. Result

In the comparative analysis, it’s observed that the Canny
baseline tends to produce an excessive number of false posi-
tives. On the other hand, the output from the Sobel baseline
appears overly subdued. The performance of the Pb-lite output
strikes a balance between these extremes. It effectively mod-
erates the output, ensuring that it doesn’t generate as many
false positives as the Canny baseline, while also not obscuring
critical features like the Sobel baseline.

II. PHASE 2: DEEP DIVE IN DEEP LEARNING

In this part of homework, modern techniques for im-
age classification using Deep Convolutional Networks have
been implemented.Various neural network architectures were
applied to the CIFAR-10 dataset, and their performances
were evaluated and compared in terms of loss and accuracy.
The CIFAR-10 dataset comprises 50,000 training images and
10,000 test images, each of 32x32 pixel resolution. These
images are categorized into a total of 10 distinct classes.

A. Baseline model

For the baseline model, a neural network architecture in-
spired by VGG is used. In this design, the number of convo-
lutional filters doubles as the depth of the network increases.
Meanwhile, to capture more detailed features in the images,
the size of the activation maps is halved using Max Pooling
with a 2x2 size, positioned between the convolutional layers.
Each convolutional layer is followed by a Rectified Linear Unit
(ReLU) activation function. After the convolutional layers, a

collection of detailed activation maps is flattened and con-
nected to a linear layer, which then feeds into the classification

layer.
Hyper-parameter Value
Optimizer Adam
Learning Rate le-3
Epochs 20
Batch Size 128
Accuracy vs. No. of epochs
—»— TestSet TrainSet
0.85 1 \/‘r{f—/
0.80 - / *
0.751
>
g
3 0.70 4
2
0.65 -
0.60 -
0.551
0 5 10 15 20 25
epoch
Fig. 10: Base Model - Accuracy vs epochs
Loss vs. No. of epochs
124 —— TestSet TrainSet

1.0

0.8

Loss

0.6 7 "
3 Y\_\_./-\’.\_’T&

0.2

0.0

10 15 20 25
epoch

o 4
w

Fig. 11: Base Model - loss vs epochs



4

2
8
7
1
4
1
2

N = OOy
POk~ RO

(=)

6 898

5 900
(0) (1) (2) ) (4) (5) (6) (7) (8) (9)
Accuracy: 83. 9

28

0 17

100 219

b 3720 48 666 290

149 3983 141 247

323 61 4313 74

35 43 4823

87 4 ¢ 19 ¢

¢ 18 £ 15 30

122 ¢ 20 e 20 19

(@) (1) (2) (4) (5) (6) (7) (8) (9)
Accuracy: 89.466

w

B WWw e,

WRNNNR

N
MWW~
W& UM

=

[l

DR WRNS R
[=1]

1
1
6

=
[=)]
]
B~

o w

v

=)

DN NN WU

=
~
~
N~

w
N &

Fig. 13: Base Model - Train Set confusion Matrix

B. Improvements to Baseline model

1) Data Augmentation: Image data is standardized at the
start of both the training and testing phases to align with a
predetermined mean and variance. This process of normalizing
the information on a per-pixel basis is crucial for maintaining
consistency, ensuring that the model’s weights do not have to
adjust to variable targets. In addition to this standardization,
the images are upscaled from their original size of 32x32
pixels to a larger resolution of 64x64 pixels.

2) Batch normalization: In addition to implementing data
augmentation techniques, a batch normalization layer has
been incorporated between convolutional layers. This inclusion
ensures that each layer receives standardized inputs, thereby
stabilizing the learning process and preventing excessive fluc-
tuations in the model’s weights.

Hyper-parameter Value
Optimizer Adam
Learning Rate le-3
Epochs 20
Batch Size 128

accuracy

Loss

Accuracy vs. No. of epochs

0.85 4

0.80

0.75 1

0.70 4

0.65 -

0.60

0.554

—— TrainSet TestSet

T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Fig. 14: Base Model - Accuracy vs epochs

Loss vs. No. of epochs

1.2 4

104

0.8

0.6

0.4 4

0.2 9

0.0

—— TrainSet TestSet

T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Fig. 15: Base Model - loss vs epochs

o) N}
‘.‘U

1
2
3
2

(=]
=]

NN WORNWD

4 A 10 896]
(5) (6) (7) (8) (9)

Fig. 16: Base Model - Test Set confusion Matrix




83
15
10
16
5
8
11
1

1

24
B¢
6

422
6
7

Fig. 17: Base Model - Train Set confusion Matrix

C. ResNet,ResNeXt,DenseNet

1) ResNet: The core concept behind the ResNet archi-
tecture involves incorporating skip connections from previ-
ous layers. These skip connections, also known as identity
connections, ensure that the model’s performance does not
deteriorate, and may even improve. They enable the model
to leverage features from preceding layers. In this homework,
the ResNet 9 architecture is employed, which consists of three
consecutive residual blocks. These blocks are interspersed with

convolution and pooling layers.

Hyper-parameter Value
Optimizer Adam
Learning Rate le-3
Epochs 20
Batch Size 128
Drop out 0.2
Weight Decay le-4

Accuracy vs. No. of epochs

== TrainSet TestSet

0.90 1

0.85 1

0.80 4 /

accuracy

0.75 1

0.70 ]

0.65

0.60 1

T T T
10.0 12.5 15.0

epoch

0.0 2.5 5.0 7.5 17.5

Fig. 18: ResNet Model - Accuracy vs epochs

Loss

Loss vs. No. of epochs

1.0+

0.8 4

0.6

0.4 4

0.2 7

0.0 T T T T

== TrainSet

TestSet

T T
10.0 12.5

epoch

0.0 2.5 5.0 7.5

15.0

T
17.5

Fig. 19: ResNet Model - loss vs epochs

95
52
14

26

O Www U@

N~

- N

[s3]

9
7
6

29
223}
188
3770
Co7ec)
340 1079
165 222
104 70

207
265

(6)

(7)

3
-
£

(7)

8

15
5
15

5

908
20
(8)

78]
139]
29]
40]
21]
39]
29]
38]
37]
923]
(9)

13

12 4648

6

41

445]
5761

75]
210]

66]
126]
132]
130]
147]

4769]

(8)

(9)

Fig. 21: ResNet Model - Train Set confusion Matrix



	Phase 1: Shaken My Boundary
	Introduction
	Generating Filters Blanks
	Oriented DoG filters
	Leung-Malik Filters
	Gabor Filters

	Texton, Brightness, and Color Map
	Texton, Brightness, and Color gradients
	Pb-lite Output
	Result

	Phase 2: Deep dive in deep learning
	Baseline model
	Improvements to Baseline model
	Data Augmentation
	Batch normalization

	ResNet,ResNeXt,DenseNet
	ResNet



