
RBE 549 Homework 0 - Alohomora
UdayGirish Maradana

MS Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts - 01609
Email: umaradana@wpi.edu

Using 1 late day

Abstract—This paper explains the work that I did as a part
of RBE 549 Homework 0. The Homework is about creating
a Probability of Boundary Detection algorithm and training
neural networks such as ResNet, ResNext, DenseNet on CIFAR-
10 Dataset.
Index Terms - Probability of Boundary Detection, Convolutional
neural networks

I. INTRODUCTION

The homework is divided into two phases. Phase I which
explains more about the process of the Probability-based
Boundary detection method. Phase II explains the process of
training different convolutional neural networks on the CIFAR-
10 dataset. Edge Detection is one of the primary algorithm in
the computer vision as to understand any object I need to know
its boundary and the Phase I essentially deals with. The other
part which is CNN based Image classification which covers the
basics of Neural network training using pytorch understanding
different strategies etc.

II. PHASE I: SHAKE MY BOUNDARY

A. Introduction

In this section I will go over the basics of the implementa-
tion of a light version of Probability based boundary detection
algorithm explained in [1] . According to the original paper
, the algorithm performs better than some of the Ill-known
traditional approaches such as Canny and Sobel Detectors. The
primary reason for this performance in most of the cases is
due to the fact that the Pb lite algorithm takes care of false
positive made because of the textures.

The algorithm primarily consists of four steps which are
explained briefly in [1].

1) Constructing various types of Filter Banks
2) Building Texture, Brightness and Color Maps
3) Texture, Brightness and Color Gradients
4) Pb lite output combined with Canny and Sobel base-

lines.

I briefly discuss these things in the following subsections.
Further, I use the BSDS500 dataset for comparing the Pb lite
output with traditional Sobel and Canny filters. The overall
architecture is explained in the Fig.1.

Fig. 1. Overview of the Pb lite Pipeline

B. Filter Banks

This step is all about building filters which helps us build
low-level features. These features helps us to understand
regional texture and brightness properties. Once I create these
filter bank I can proceed further building a Texton map which
captures the texture properties of the image. Here I build
primary three different sets of filter banks which are explained
below:

1) Oriented Derivative of Gaussian (DoG) Filters: This
is a simple filter which involves convolving a simple Sobel
filter and a Gaussian Kernel and finally rotating the result.
Selecting different standard deviations for the Gaussian Kernel
and rotating at random positions helps us to get a wide variety
of filters. (See Fig.2)

Fig. 2. DoG Filters

2) Leung-Malik Filters: The Leung-Malik (LM) filters are
a set of multi scale, multi orientation filter bank with 48 filters.
It consists of the below filters. (See Fig.3 and Fig.4)

1) 36 Filters - First and Second Order derivatives of
Gaussians at 6 orientations and 3 Scales. These first
and second order derivatives occur at the 3 scales with
a elongation factor α, which means having different



standard deviations along x and y axes (i.e, σx =
σ, σy = α× σ.

2) Four Gaussians at four difference scales.
3) 8 Laplacian of Gaussian (LOG) Filters which occur at

two scales σ and 3σ.

Fig. 3. LM Small Filters

Fig. 4. LM Large Filters

Overall, the scales used for the filters are [1,
√
2, 2, 2

√
2].

And the orientations are in the range of (0, 180) degrees. Here
Laplacian of Gaussian filters are constructed by convolving a
laplacian filter on the Gaussians at different scales.

3) Gabor Filters: Gabor filters are very interesting as their
inspiration is based from the human visual system. A gabor
filter is a gaussian kernel function modulated by a sinusoidal
plane wave. The Gabor filter is primarily used for Texture
analysis and is a linear filter that analyzes whether there is any
specific frequency content in the image in specific directions
in a localized region around the region of analysis. (See Fig.5)

C. Texture, Brightness and Color Maps (T ,B, C)

1) Texton Map: Filtering an input image with each element
of the filter bank created above results in a vector of filter
responses centered on each pixel. For instance, if your filter
bank has N filters, you’ll have N filter responses at each
pixel. A distribution of these responses could be thought of as
encoding texture properties. This representation is simplified
with a discrete texton ID. I will do this by clustering the
filter responses into K Textons which makes the pixels having
unique texton ID. Here I used the cluster size as K = 64.

2) Brightness Map: Here I take the image and cluster the
brightness values using KMeans. This map is called Brightness
Map. Here I used the cluster size as K = 16.

Fig. 5. Gabor Filters

3) Color Map: Here I take the image and capture the
color changes or chrominance content in the image. I cluster
the color values using Kmeans. I can also cluster each color
channel separately here. Please find the texton, brightness and
Color Maps of the given BSDS500 Dataset in the figures (6-
15).

Fig. 6. (T ,B, C) for Image 1

Fig. 7. (T ,B, C) for Image 2

Fig. 8. (T ,B, C) for Image 3

D. Texture, Brightness and Color Gradients (Tg,Bg, Cg)
To obtain gradients the simple step is to compute differences

of values across different shapes and sizes. But doing that on
an image is a hard problem as it involves looping over the
pixels multiple times and computational inefficient. To solve
this problem, we leverage the concept of half-disc masks.
Before going there, why gradients are needed ?
Because gradients helps us to understand changes in the



Fig. 9. (T ,B, C) for Image 4

Fig. 10. (T ,B, C) for Image 5

Fig. 11. (T ,B, C) for Image 6

Fig. 12. (T ,B, C) for Image 7

Fig. 13. (T ,B, C) for Image 8

Fig. 14. (T ,B, C) for Image 9

Fig. 15. (T ,B, C) for Image 10

Fig. 16. Half Disk Masks at Radius [5, 10, 15]

images which gives the primary idea of a edge as edge
is a location where a change is happening in a 2D image
whether it is texture, color or brightness. And most of the
traditional filters also work on this concept. Please find the
texton, brightness and Color gradients of the given BSDS500
Dataset in the figures (17-26).

1) Half Disc Masks: The half-disc masks are simply (pairs
of) binary images of half-discs. This helps us to compute the
χ2 (chi-square) distances using a filtering operation (Similar
to Convolution). This enables us to loop over each pixel faster
than looping over each pixel neighborhood and aggregating
counts for histograms. I have formed these scales at 8 ori-
entations and 3 scales. The primary idea behind this method
is that if the distributions are similar the gradient should be
small and if the distributions are dissimilar then the gradients
should be large. Because our half discs span multiple scales
and orientations, I will end up with a series of local gradient
measurements encoding. Please find the Half Disc Masks filter
Fig.16

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi
(1)

Fig. 17. (Tg ,Bg , Cg) for Image 1

E. Pb Lite Output

The final step of getting the Pb lite output involves combin-
ing the information from the features with a baseline method



Fig. 18. (Tg ,Bg , Cg) for Image 2

Fig. 19. (Tg ,Bg , Cg) for Image 3

Fig. 20. (Tg ,Bg , Cg) for Image 4

Fig. 21. (Tg ,Bg , Cg) for Image 5

Fig. 22. (Tg ,Bg , Cg) for Image 6

Fig. 23. (Tg ,Bg , Cg) for Image 7

Fig. 24. (Tg ,Bg , Cg) for Image 8

Fig. 25. (Tg ,Bg , Cg) for Image 9

Fig. 26. (Tg ,Bg , Cg) for Image 10

(based on Sobel or Canny or some Iighted average of both)
using the below equation.

PbEdges =
(Tg + Bg + Cg)

3
⊙(w1∗cannyPb+w2∗sobelPb)

(2)
Here, ⊙ is the Hadamard product operator. And the w1 and w2

are chosen as 0.5 in the implementation. This can be varied
and tunable and can get better results in different scenarios.

The Outputs of Pblite can be seen in the figures (27-36).

Fig. 27. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 1

Fig. 28. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 2

Fig. 29. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 3

F. Discussion
From the above results we can understand that the Pb lite

algorithm is able to reduce some of the false positive in Canny
and Sobel baselines with respect to texture. Even though they
look a little light , the edges in the Pblite are almost outlining
the object in the image. And Pb lite gives you more flexibility
in terms of tunable parameters of filter banks which can almost
customise most of the images. Being said that using this
algorithm in many cases in real life can be tricky and needs
adaptation to the scenario. Even though it works , it needs a
bit more time to tune it produce richer outputs.



Fig. 30. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 4

Fig. 31. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 5

Fig. 32. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 6

Fig. 33. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 7

Fig. 34. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 8

Fig. 35. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 9

Fig. 36. Comparison of Pblite (1) with Sobel(2) and Canny(3) for Image 10

III. PHASE II: DEEP DIVE ON DEEP LEARNING - CIFAR10

A. Introduction

In this Phase, I will be working on the implementation of
multiple neural network architectures on CIFAR-10 dataset
and their performance based on loss and accuracy will be
compared. Various methods to improve the performance such
as weight decay(regularization), data augmentation, standard-
ization and learning rate decay are explored.

One of the primary approach to train on something visual
data is to use a class of neural networks called Convolution
Neural networks. CNN’s are quite capable as they almost work
on the same principle as filters. The Traditional filters which
I have discussed are hand designed to understand specific
feature. CNN’s also can use different scales and can capture
different feature with the filters it have. The only trick is that
these features are learnable. Some of the common problems
which are faced by Normal Custom CNN’s might be:

1) Vanishing Gradients: During Backprop, Gradients can
become extremely small as they Ire propogated back
through many layers, leading to very slow or halted
learning in early layers.

2) Exploding Gradients: In Backprop, Gradients can be-
come excessively large during backpropagation, causing
instability and making it difficult to find meaningful
updates to the model parameteres.

3) Computational Efficiency: Deep Neural networks with
a large number of parameters can be computationally
expensive and even though they are accuracte, in real
world they are not much useful especially in resource-
constrained environments.

4) Feature propogation:Feature propogation is the process
by which features are extracted at different layers of
a neural network are passed or propagated through the
network.

B. CIFAR10 - Custom Network

Here I start with a very basic Custom network with three
convolutional layers with Batch norm and Maxpool and
Dropout which is shown in Fig.37.

The Loss and accuracy curves are shown in Fig.38 and
Fig.39 respectively and Confusion Matrix - Fig (40 and 41).
The train and test accuracy are 99.30% and 68.67%. This
model is further trained and the best performance is indicated
in Table I.

C. ResNet 34

The primary idea behind the ResNet architecture is to intro-
duce residual learning by using skip connections or shortcuts,
allowing the network to learn residual functions. So, Resnet
solves the primary problem which is Vanishing Gradients. For
several years, it used to be the best concept till I Ire faced with
Visual transformers. Even now, the concepts such as Residual
and Identity mapping are used in several popular architectures.
A block of how a Residual mapping looks is shown in Figure
42. This is from the ResNet 34 layers implementation I did.



Fig. 37. Custom Neural Network

0 5 10 15 20

0.4

0.6

0.8

1

1.2

1.4

1.6
train
test

Epoch Loss

Epoch

Lo
ss

Fig. 38. Custom Neural Network -Loss

0 5 10 15 20

0.6

0.7

0.8

0.9 test
train

Epoch Accuracy

Epoch

Ac
cu

ra
cy

Fig. 39. Custom Neural Network -Accuracy

Fig. 40. Custom Neural Network - CF Matrix (Train)

Fig. 41. Custom Neural Network -CF Matrix (Test)

The Loss and accuracy curves are shown in Fig.43 and
Fig.44 respectively and Confusion Matrix - Figures (45 and
46).The train and test accuracy are 98.18% and 76.47%. This
model is further trained and the best performance is indicated
in Table I.

D. ResNext

ResNext builds on the foundations of ResNet and introduces
a new concept of a cardinality parameter, which primarily
controls the size of the set of the transformations a block can
perform. This helps the model to be more efficient by enabling
multiple paths for information flow within each block. A block
of how a Residual mapping as a result of Cardinality looks
like is shown in Figure 47. This is from the Custom ResNext
layers implementation I did. The Loss and accuracy curves
are shown in Fig.48 and Fig.49 respectively and Confusion
matrix - Figures (50 and 51).The train and test accuracy are



Fig. 42. ResNet34 - Sample ResNet Block

98.43% and 74.67%. This model is further trained and the best
performance is indicated in Table I.

E. DenseNet 121

DenseNet works on the concept that each layer in the
future receives feature maps from all preceding layers in a
feedforward fashion. A block of Bottleneck layers and the
connections are shown in Figure 52. The picture is from the
DenseNet 121 architecture I have implemented. The Loss and
accuracy curves are shown in Fig.53 and Fig.54 respectively
and Confusion Matrix - Figures (55 and 56). The train and
test accuracy are 95.996% and 87.14%. This model is further
trained and the best performance is indicated in Table I.

F. MobileNet V2

Mobilenet V2 uses depthwise separable convolutions to
reduce computation and parameters. This network is essen-
tially light but having good performance when compared to
ResNet not close but accurate. The primary advantage of
using Mobilenet V2 is that it can be used on Resource-
constrained devices. It also uses a concept called Inverted

0 10 20 30 40

0

0.5

1

1.5 train
test

Epoch Loss

Epoch

Lo
ss

Fig. 43. ResNet34 -Loss

0 10 20 30 40

0.6

0.7

0.8

0.9

1 test
train

Epoch Accuracy

Epoch

Lo
ss

Fig. 44. ResNet34 -Accuracy

Fig. 45. ResNet 34 - CF Matrix (Train)



Fig. 46. ResNet 34 -CF Matrix (Test)

Residual networks which are a type of ResNet Implementation
which have three primary concepts:

1) Linear Bottleneck: A light Iight linear layer that expands
the number of channels

2) Depthwise Convolution: A depthwise separable convo-
lution that captures spatial dependencies efficiently.

3) Projection: One more linear layer that reduces the num-
ber of channels back to the original size. The only
difference between the Residual networks and Inverted
Residual design is that the skips here pass through
depthwise separable convolutions.

A sample block of Architecture of MobileNet v2 is shown in
Figure 57. The Loss and accuracy curves are shown in Fig.58
and Fig.59 respectively and the Confusion Matrix - Figures (60
and 61).The train and test accuracy are 92.158% and 72.46%.
This model is further trained and the best performance is
indicated in Table I.

G. Comparison

The graphs which are shown above are for relative compari-
son of the variance of train and test accuracy and loss, some of
the models I have trained overnight for good number of epochs
generated decent accuracy which you can find below. Those
checkpoints are shared along with the code. The models we
have used are heavy as I wanted to test standard Architectures
such as ResNet34, Variant of it as ResNext, DenseNet 121.
The architectures that I made are generalized which can be
changed to get different variants of the networks. For these
networks, which I have trained please refer to the table below.

All the models are trained on RTX3080 16GB VRAM with
i9 11th gen CPU (48GB RAM) and the inference is also
performed on the same device.

IV. CONCLUSION

Phase I: Phase I involved dealing with a lot of traditional
Image processing techniques to apply traditional filters on
the image. One of the parts where I spent a lot of time

Fig. 47. ResNext - Sample ResNet Block

0 10 20 30 40

0

0.5

1

1.5 test
train

Epoch Loss

Epoch

Lo
ss

Fig. 48. ResNext -Loss



0 10 20 30 40

0.5

0.6

0.7

0.8

0.9

1 test
train

Epoch Accuracy

Epoch

Ac
cu

ra
cy

Fig. 49. ResNext -Accuracy

Fig. 50. ResNext - CF Matrix (Train)

Fig. 51. ResNext -CF Matrix (Test)

Fig. 52. DenseNet-Sample Bottleneck Block

0 5 10 15

0.2

0.4

0.6

0.8

1

1.2 train
test

Epoch Loss

Epoch

Lo
ss

Fig. 53. DenseNet -Loss



0 5 10 15

0.6

0.7

0.8

0.9

train
test

Epoch Accuracy

Epoch

Ac
cu

ra
cy

Fig. 54. DenseNet -Accuracy

Fig. 55. DenseNet - CF Matrix (Train)

Fig. 56. DenseNet -CF Matrix (Test)

Fig. 57. MobileNet V2 Sample Block

0 5 10 15 20 25 30

0.5

1

1.5

test
train

Epoch Loss

Epoch

Lo
ss

Fig. 58. MobileNetV2 -Loss

Model Name Parameters Accuracy (%) Inference Time(ms)
Train Test

Custom CNN 1061010 99.48 69.41 0.52
ResNet34 21289802 91.90 77.03 3.64
ResNext 2907722 97.938 72.43 3.91
DenseNet 7093050 99.75 90.48 11.75
MobileNetv2 2236682 89.31 67.66 3.56

TABLE I
BEST PERFORMANCE METRICS FOR DIFFERENT ARCHITECTURES



0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

test
train

Epoch Accuracy

Epoch

Ac
cu

ra
cy

Fig. 59. MobileNetV2 -Accuracy

Fig. 60. MobileNet V2 - CF Matrix (Train)

Fig. 61. MobileNet V2 -CF Matrix (Test)

Model Name No. Parameters Total Size(MB) Params Size (MB)

Custom CNN 1061010 5.41 4.05
ResNet34 21289802 83.19 81.21
ResNext 2907722 13.96 11.09
DenseNet 7093050 389.52 27.06
MobileNetv2 2236682 11.68 8.53

TABLE II
SIZE OF THE MODELS

Hyperparam - Setting

Optimizer AdamW
LR Scheduler Step
Learning Rate 1e-3
Weight Decay 5e-4
MiniBatchSize 64
Max Epochs Trained 50

TABLE III
HYPERPARAMETERS / SELECTIONS MADE FOR TRAINING

debugging is I was not able to figure out why the Gaussian
first derivative or second derivative is taken along axis. Even
though changing whether we want to take a First or Second
derivative along both axes or different axis did not change the
result much. But the filters that are shown in the reference
[1] are not same as mine. But this was a learning as to how
much impact changing these parameters can make.

Phase II: Phase II involved solving some of the issues with
the code that are solvable. Going through the papers at least
to have a skim through takes a bit of time, now making me
realize to spend more time refreshing the concepts. On the
Custom Convolution network and the other networks we can
see there is a lot of overfitting. This can be further reduced
by using Augmentation techniques and more better training
techniques to choose the best hyperparameters. Currently, we
used only Random Crop Augmentation which provided a bit
better result in some cases.

ACKNOWLEDGMENT

I would like to thank Prof. Nitin J Sanket for giving this
assignment as this was a lot of learning and the clean theory
and instructions provided on the Course website.

REFERENCES

[1] Homework 0 - Course Website - https://rbe549.github.io/spring2024/hw/hw0/
[2] Arbeláez, P., Maire, M., Fowlkes, C. & Malik, J. Contour Detection and

Hierarchical Image Segmentation. IEEE Transactions On Pattern Analysis
And Machine Intelligence. 33, 898-916 (2011)

[3] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image
Recognition. (2015)

[4] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. (2019)

[5] Xie, S., Girshick, R., Dollár, P., Tu, Z. & He, K. Aggregated Residual
Transformations for Deep Neural Networks. (2017)

[6] Huang, G., Liu, Z., Maaten, L. & Weinberger, K. Densely Connected
Convolutional Networks. (2018)


	Introduction
	Phase I: Shake My Boundary
	Introduction
	Filter Banks
	Oriented Derivative of Gaussian (DoG) Filters
	Leung-Malik Filters
	Gabor Filters

	Texture, Brightness and Color Maps (T, B, C)
	Texton Map
	Brightness Map
	Color Map

	Texture, Brightness and Color Gradients (Tg,Bg,Cg)
	Half Disc Masks

	Pb Lite Output
	Discussion

	Phase II: Deep Dive on Deep Learning - CIFAR10
	Introduction
	CIFAR10 - Custom Network
	ResNet 34
	ResNext
	DenseNet 121
	MobileNet V2
	Comparison

	Conclusion
	References

